166k views
3 votes
Use partial fractions to find the indefinite integral. (Remember to use absolute values where appropriate. Use C for the constant of integration.) 1 /x^2 − 49 dx

User Gui Ambros
by
3.8k points

1 Answer

4 votes

Answer:


\displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14) \bigg( \ln |x - 7| - \ln |x + 7| \bigg) + C

General Formulas and Concepts:

Algebra I

Terms/Coefficients

  • Expanding/Factoring

Pre-Calculus

  • Partial Fraction Decomposition

Calculus

Differentiation

  • Derivatives
  • Derivative Notation

Derivative Property [Addition/Subtraction]:
\displaystyle (d)/(dx)[f(x) + g(x)] = (d)/(dx)[f(x)] + (d)/(dx)[g(x)]

Basic Power Rule:

  1. f(x) = cxⁿ
  2. f’(x) = c·nxⁿ⁻¹

Integration

  • Integrals
  • [Indefinite Integrals] integration Constant C

Integration Property [Multiplied Constant]:
\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx

Integration Property [Addition/Subtraction]:
\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

U-Substitution

Explanation:

Step 1: Define

Identify


\displaystyle \int {(1)/(x^2 - 49)} \, dx

Step 2: Integrate Pt. 1

  1. [Integrand] Factor:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = \int {(1)/((x - 7)(x + 7))} \, dx
  2. [Integrand] Split [Partial Fraction Decomp]:
    \displaystyle (1)/((x - 7)(x + 7)) = (A)/(x - 7) + (B)/(x + 7)
  3. Rewrite:
    \displaystyle 1 = A(x + 7) + B(x - 7)
  4. [Decomp] Substitute in x = 7:
    \displaystyle 1 = A(7 + 7) + B(7 - 7)
  5. Simplify:
    \displaystyle 1 = 14A
  6. Solve:
    \displaystyle A = (1)/(14)
  7. [Decomp] Substitute in x = -7:
    \displaystyle 1 = A(-7 + 7) + B(-7 - 7)
  8. Simplify:
    \displaystyle 1 = -14B
  9. Solve:
    \displaystyle B = (-1)/(14)
  10. [Split Integrand] Substitute in variables:
    \displaystyle (1)/((x - 7)(x + 7)) = ((1)/(14))/(x - 7) - ((1)/(14))/(x + 7)

Step 3: Integrate Pt. 2

  1. [Integral] Rewrite [Split Integrand]:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = \int {\bigg( ((1)/(14))/(x - 7) - ((1)/(14))/(x + 7) \bigg)} \, dx
  2. [Integral] Rewrite [Integration Property - Addition/Subtraction]:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = \int {((1)/(14))/(x - 7)} \, dx - \int {((1)/(14))/(x + 7)} \, dx
  3. [Integrals] Rewrite [Integration Property - Multiplied Constant]:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14)\int {(1)/(x - 7)} \, dx - (1)/(14)\int {(1)/(x + 7)} \, dx
  4. Factor:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14) \bigg( \int {(1)/(x - 7)} \, dx - \int {(1)/(x + 7)} \, dx \bigg)

Step 4: Integrate Pt. 3

Identify variables for u-substitution.

Integral 1

  1. Set u:
    \displaystyle u = x - 7
  2. [u] Differentiate [Basic Power Rule, Derivative Properties]:
    \displaystyle du = dx

Integral 2

  1. Set z:
    \displaystyle z = x + 7
  2. [z] Differentiate [Basic Power Rule, Derivative Properties]:
    \displaystyle dz = dx

Step 5: Integrate Pt. 4

  1. [Integrals] U-Substitution:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14) \bigg( \int {(1)/(u)} \, du - \int {(1)/(z)} \, dz \bigg)
  2. [Integrals] Logarithmic Integration:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14) \bigg( \ln |u| - \ln |z| \bigg) + C
  3. [Variables] Back-Substitute:
    \displaystyle \int {(1)/(x^2 - 49)} \, dx = (1)/(14) \bigg( \ln |x - 7| - \ln |x + 7| \bigg) + C

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

User Imrane
by
3.9k points