Answer:
x = L/6 is the side of the square at the corner
Explanation:
Let´s call "x" the side of the square at the edge, then if the cardboard is L*L the volume of the open box is:
V = ( L - 2*x ) * ( L - 2*x) * x
V(x) = [L² - 2*L*x - 2*L*x +4*x²]*x
V(x) = L²*x - 4*L*x² + 4*x³
Taking derivatives on both sides of the equation we get:
V´(x) = L² - 8*L*x + 12* x²
V´(x) = 0 L² - 8*L*x + 12* x² = 0
Solving for x
12*x² - 8*L*x + L² = 0
x₁,₂ = 8*L ±√ 64*L² - 48*L² / 24
x₁,₂ = 8*L ±√16*L² / 24
x₁,₂ = 8*L ± 4*L / 24
x₁ = 12*L /24 then e dismiss x₁ is not a feasible solution
x₂ = 4*L/24
x₂ = L/ 6 = x