65.4k views
3 votes
Let cos(2x) - cos(x) = 0 where 0° < x <180° what are the possible values of x

2 Answers

3 votes

Answer:

C/ 0 or 120

Explanation:

edge 2020

User Frerk Morrin
by
4.6k points
5 votes

Answer:

x= 120°

Explanation:

cos(2x)-cos(x)=0


\Rightarrow 2\cos^2x-\cosx-1=0 [as
\cos(2x)=2\cos^2x-1]


\Rightarrow 2\cos^2x-2\cosx +\cosx-1=0


\Rightarrow 2\cos x(\cos x-1) +(\cos x-1)=0


\Rightarrow (\cos x-1)(2\cos x +1)=0


\Rightarrow \cos x-1=0 \;or\; 2\cos x +1=0


\Rightarrow \cos x=1 \;or\; \cos x =-1/2


\Rightarrow x=\cos^(-1)1 \;or\; x =\cos(-1/2)

For
x=\cos^(-1)1 and 0° < x <180°

There is no possible value of x.

For
x =\cos(-1/2) and 0° < x <180°

The possible value of x is

x= 120°

User Jakub Berezanski
by
4.3k points