105k views
1 vote
LaTeX: Create\:an\:equation\:in\:slope\:intercept\:form\:that\:is\:parallel\:to\:y\:=\frac{\:1}{3}x\:+\:4\:and\:goes\:through\:the\:point\:\left(-3,\:1\right).C r e a t e a n e q u a t i o n i n s l o p e i n t e r c e p t f o r m t h a t i s p a r a l l e l t o y = 1 3 x + 4 a n d g o e s t h r o u g h t h e p o i n t ( − 3 , 1 ) .

Group of answer choices


LaTeX: y=\frac{1}{3}x+2 y = 1 3 x + 2 y = 1 3 x + 2 y = 1 3 x + 2


LaTeX: y\:=\:-3x\:+\:4 y = − 3 x + 4 y = − 3 x + 4 y = − 3 x + 4


LaTeX: y=\frac{1}{3}x y = 1 3 x y = 1 3 x y = 1 3 x


LaTeX: y=-3x-8

1 Answer

2 votes

Answer:


y = (1)/(3)x +2

Explanation:

Given

Equation:


y = (1)/(3)x + 4


Point: (-3,1)

Required

Determine the equation of the point parallel to the given equation

First, we need to determine the slope of:
y = (1)/(3)x + 4 using


y = mx + b

Where m represents slope.

By comparison


m = (1)/(3)

The equation of the point is calculated as thus:


y - y_1 = m(x - x_1)

Where
(x_1,y_1) = (-3,1)

So, we have:


y - y_1 = m(x - x_1)


y - 1 = (1)/(3)(x - (-3))


y - 1 = (1)/(3)(x +3)


y - 1 = (1)/(3)x +1

Solve for y


y = (1)/(3)x +1 +1


y = (1)/(3)x +2

User Canoe
by
4.6k points