14.7k views
3 votes
Which statement describes the inverse of m(x) = x^2 – 17x?

a. The domain restriction x ≥ StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction minus StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


b. The domain restriction x ≥ StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction + StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


c. The domain restriction x ≥ Negative StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction minus StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .


d.The domain restriction x ≥ Negative StartFraction 17 Over 2 EndFraction results in m–1(x) =StartFraction 17 Over 2 EndFraction + StartRoot x + StartFraction 289 Over 4 EndFraction EndRoot .

User Nopens
by
4.4k points

1 Answer

3 votes

Given:

The function is


m(x)=x^2-17x

To find:

The inverse of the given function.

Solution:

We have,


m(x)=x^2-17x

Substitute m(x)=y.


y=x^2-17x

Interchange x and y.


x=y^2-17y

Add square of half of coefficient of y , i.e.,
\left((-17)/(2)\right)^2 on both sides,


x+\left((-17)/(2)\right)^2=y^2-17y+\left((-17)/(2)\right)^2


x+\left((17)/(2)\right)^2=y^2-17y+\left((17)/(2)\right)^2


x+\left((17)/(2)\right)^2=\left(y-(17)/(2)\right)^2
[\because (a-b)^2=a^2-2ab+b^2]

Taking square root on both sides.


\sqrt{x+\left((17)/(2)\right)^2}=y-(17)/(2)

Add
(17)/(2) on both sides.


\sqrt{x+\left((17)/(2)\right)^2}+(17)/(2)=y

Substitute
y=m^(-1)(x).


m^(-1)(x)=\sqrt{x+((189)/(4)})+(17)/(2)

We know that, negative term inside the root is not real number. So,


x+\left((17)/(2)\right)^2\geq 0


x\geq -\left((17)/(2)\right)^2

Therefore, the restricted domain is
x\geq -\left((17)/(2)\right)^2 and the inverse function is
m^(-1)(x)=\sqrt{x+((189)/(4)})+(17)/(2).

Hence, option D is correct.

Note: In all the options square of
(17)/(2) is missing in restricted domain.

User Kregus
by
4.6k points