Answer:
![x=19](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ypw4f4dwn24dxg4wkwm1y1cqhs6c0w7m6.png)
Explanation:
1) Use this rule:
.
![(x-3)^{(1*1)/(2*2) } =√(x-15)](https://img.qammunity.org/2023/formulas/mathematics/college/9i0voqs4i9u1kd1sl5imot8vnij95yjfr3.png)
2) Simplify 1 * 1 to 1.
![\sqrt[2*2]{x-3} =√(x-15)](https://img.qammunity.org/2023/formulas/mathematics/college/o3zt3rwouyksxwl9lfvdwux8y3tvpn9u4c.png)
3) Simplify 2 * 2 to 4.
![\sqrt[4]{x-3} =√(x-15)](https://img.qammunity.org/2023/formulas/mathematics/college/q1ocdi5mz49ngg3icboeavmmtks379dg08.png)
4) Square both sides.
![√(x-3) =x-15](https://img.qammunity.org/2023/formulas/mathematics/college/lpjunq5pc3v4r4dya8cc8v9ipbzytibkvs.png)
5) Square both sides.
![x-3=x^2-30x+225](https://img.qammunity.org/2023/formulas/mathematics/college/hs6yfq9tevunvriz2f3ldyxiw9xxgdhmmd.png)
6) Move all terms to one side.
![x-3-x^2+30x-225=0](https://img.qammunity.org/2023/formulas/mathematics/college/6pizc4jzp1fe4itvcdmtgh5rhgr9j9rjya.png)
7) Simplify
to
.
![31x-228-x^2=0](https://img.qammunity.org/2023/formulas/mathematics/college/hbsek00w30nl8i83ehh7q7r6aqcy70i0gz.png)
8) Multiply both sides by -1.
![x^2-31x+228=0](https://img.qammunity.org/2023/formulas/mathematics/college/xzp6k3lse0s9x56wu0xg7ih7d1tkvrostj.png)
9) Factor
.
1) Ask: Which two numbers add up to -31 and multiply to 228?
and
![-12](https://img.qammunity.org/2023/formulas/mathematics/college/ovxgt6wpycp6cfqepaaezw41vl4nkqos8u.png)
2) Rewrite the expression using the above.
![(x-19)(x-12)](https://img.qammunity.org/2023/formulas/mathematics/college/y52l7j69bb8ctcmqomdrd8zy72181idozg.png)
10) Solve for
.
1) Ask when will
equal zero?
When
or
![x-12=0](https://img.qammunity.org/2023/formulas/mathematics/college/z8ijpx8gbyvhmkt6nzrhefbyfyw1vappnw.png)
2) Solve each of the 2 equations above.
![x=19,12](https://img.qammunity.org/2023/formulas/mathematics/college/qh2wxd2g8oy4vc8jlakg1hq6dwowjwho09.png)
11) Check solution.
When
2, the original equation
does not hold true. We will drop
from the solution set.
12) Therefore,
![x=19](https://img.qammunity.org/2023/formulas/mathematics/high-school/4ypw4f4dwn24dxg4wkwm1y1cqhs6c0w7m6.png)
Check the Answer:
![\sqrt{√(x-3)}=√(x-15)](https://img.qammunity.org/2023/formulas/mathematics/college/lojt5ur82jk2471yop91elwkbp1iso4ibm.png)
1) Let
.
![\sqrt{√(19-3)}=√(19-15)](https://img.qammunity.org/2023/formulas/mathematics/college/ij7vnuwpjpz9mfoaqg7he5stjvynwcv07z.png)
2) Simplify 19 - 3 to 16.
![\sqrt{√(16)}=√(19-15)](https://img.qammunity.org/2023/formulas/mathematics/college/bqxsh6rmrx4fgioqlouhihtujenzkwx387.png)
3) Since 4 * 4 is 16 6, the square root of 16 is 4.
![√(4)=√(19-15)](https://img.qammunity.org/2023/formulas/mathematics/college/xhke46v0m72p9y182axdmf7xku8pkitswj.png)
4) Since 2 * 2 = 4, the square root of 4 is 2.
![2=√(19-15)](https://img.qammunity.org/2023/formulas/mathematics/college/w32p52j9zeisyhbi0clq1p1lj85coaxsnp.png)
5) Simplify 19 - 15 to 4.
![2=√(4)](https://img.qammunity.org/2023/formulas/mathematics/college/woeqrwnmx5l576486sasvh7euy3o01cuq6.png)
6) Since 2 * 2 = 4, the square root of 4 is 2.
![2 = 2](https://img.qammunity.org/2023/formulas/mathematics/college/3bpf75c0yyvonh32qjthe2x2jrjg9p4mgy.png)