Answer:
A point on the ellipsoid is (-4,2,2) or (4,-2,-2)
Explanation:
Given equation of ellipsoid f(x,y,z) :
![x^2+y^2+4z^2=36](https://img.qammunity.org/2021/formulas/mathematics/college/trj72va7z2ri4tmiu6zw1nnhi6bbgg33r5.png)
Parametric equations:
x=-4t-1
y=2t+1
z=8t+3
Finding the gradient of function
![\\abla f(x,y,z)=<\frac{\partial{f}}{\partial{x}},\frac{\partial{f}}{\partial{y}},\frac{\partial{f}}{\partial{z}}>\\\\abla f(x,y,z)=<2x,-2y,8x>](https://img.qammunity.org/2021/formulas/mathematics/college/4qmwmbh2ty5k2he80ksobyvnpds2t2g45y.png)
So, The directions vectors=(-4,2,8)
Now the line is perpendicular to plane when direction vector is parallel to the normal vector of line
![\\ablaf(x,y,z)=(2x,2y,8z)=\lambda(-4,2,8)](https://img.qammunity.org/2021/formulas/mathematics/college/q0jhy0irmlgx087a7mz20a9t2oajwc442a.png)
So,
![2x=-4\lambda](https://img.qammunity.org/2021/formulas/mathematics/college/wzdzuvp30i4j74jxd52zn3lif33jue14ru.png)
![\Rightarrow x=-2\lambda](https://img.qammunity.org/2021/formulas/mathematics/college/26rnpjf4lo1uxvab76iz7ztdwgm2umar19.png)
![2y=2\lambda\\\Rightarrow y=\lambda\\8z=8\lambda\\\Rightarrow z=\lambda](https://img.qammunity.org/2021/formulas/mathematics/college/zy7ulrk9yi9mrg3ucwsundfy54ipr5mba3.png)
Substitute the value of x , y and z in the ellipsoid equation
![(2\lambda)^2+(\lambda)^2+4(\lambda)^2=36\\9(\lambda)^2=36\\\lambda^2=4\\\lambda=\pm 2](https://img.qammunity.org/2021/formulas/mathematics/college/z74spukw13v1omilo7s8ozdntwn4v17rc2.png)
With
![\lambda = 2](https://img.qammunity.org/2021/formulas/mathematics/college/i5yuo4eoafre4wvqnsgy5aw0ur3lc7z0m7.png)
x=-2(2)=-4
y=2
z=2
With
![\lambda =- 2](https://img.qammunity.org/2021/formulas/mathematics/college/n552e5c2dsulidktcp7fzc5rmpk6a3pr2h.png)
x=-2(-2)=4
y=-2
z=-2
Hence a point on the ellipsoid is (-4,2,2) or (4,-2,-2)