103k views
0 votes
Find a point on the ellipsoid x2+y2+4z2=36x2+y2+4z2=36 where the tangent plane is perpendicular to the line with parametric equations

User RonLugge
by
5.4k points

1 Answer

3 votes

Answer:

A point on the ellipsoid is (-4,2,2) or (4,-2,-2)

Explanation:

Given equation of ellipsoid f(x,y,z) :
x^2+y^2+4z^2=36

Parametric equations:

x=-4t-1

y=2t+1

z=8t+3

Finding the gradient of function


\\abla f(x,y,z)=<\frac{\partial{f}}{\partial{x}},\frac{\partial{f}}{\partial{y}},\frac{\partial{f}}{\partial{z}}>\\\\abla f(x,y,z)=<2x,-2y,8x>

So, The directions vectors=(-4,2,8)

Now the line is perpendicular to plane when direction vector is parallel to the normal vector of line


\\ablaf(x,y,z)=(2x,2y,8z)=\lambda(-4,2,8)

So,
2x=-4\lambda


\Rightarrow x=-2\lambda


2y=2\lambda\\\Rightarrow y=\lambda\\8z=8\lambda\\\Rightarrow z=\lambda

Substitute the value of x , y and z in the ellipsoid equation


(2\lambda)^2+(\lambda)^2+4(\lambda)^2=36\\9(\lambda)^2=36\\\lambda^2=4\\\lambda=\pm 2

With
\lambda = 2

x=-2(2)=-4

y=2

z=2

With
\lambda =- 2

x=-2(-2)=4

y=-2

z=-2

Hence a point on the ellipsoid is (-4,2,2) or (4,-2,-2)

User Nkshio
by
5.6k points