Answer:
a) 19.63 ft (2 dp)
b) 147.26 ft² (2 dp)
Explanation:
To find the length of the curved fence, use the formula for arc length of a circle.
To find the area of the vegetable garden, use the formula for area of a sector of a circle.
Formula
![\textsf{Arc length}=2 \pi r\left((\theta)/(360^(\circ))\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/c54m07slifj3fsgqidbujn9zdvrgs79xlx.png)
![\textsf{Area of a sector}=\left((\theta)/(360^(\circ))\right) \pi r^2](https://img.qammunity.org/2023/formulas/mathematics/high-school/mv38t54k9aqcax55y9ydmpr8wp2muti16a.png)
![\quad \textsf{(where r is the radius and}\:\theta\:{\textsf{is the angle in degrees)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/lh0zgj1edzjdc3tp1fk8hcu7k13qf0svvp.png)
Calculation
Given:
= 75°- r = 15 ft
![\begin{aligned}\implies \textsf{Arc length} &=2 \pi (15)\left((75^(\circ))/(360^(\circ))\right)\\ & = 30 \pi \left((5)/(24)\right)\\ & = (25)/(4) \pi \\ & = 19.63\: \sf ft\:(2\:dp)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/coqn2wrjydhlpunb6o8rojlhw9v85t1oaq.png)
![\begin{aligned} \implies \textsf{Area of a sector}& =\left((75^(\circ))/(360^(\circ))\right) \pi (15)^2\\& = \left((5)/(24)\right)\pi \cdot 225\\& = (375)/(8) \pi\\& = 147.26\: \sf ft^2 \:(2\:dp)\end{aligned}](https://img.qammunity.org/2023/formulas/mathematics/high-school/ubmsiw92e6r4u28aecbjylj9ggidn9udd2.png)