Answer:
Kindly check explanation
Explanation:
Given the data:
426 429 418 417 422 435 420 410 432 435 423 426 409 437 436 429 411 426 411 438 422 428 413 414
A) Point estimate of the mean(m) : (ΣX) /n
Sample size(n) = 24
(426+429+418+417+422+435+420+410+432+435+423+426+409+437+436+429+411+426+411+438+422+428+413+414) / 24
= 10167 / 24
= 423.625 (3 decimal places)
b) Calculate a point estimate of the standard deviation of oxide thickness for all wafers in the population
s = √[Σ(X - m)² / (n - 1)]
Using calculator :
s = 9.277
s = 9.28 ( 2 decimal places)
C.)
Standard Error of point estimate :
SE = s/√n
SE = 9.28 / √24
SE = 1.8942720
(d) Calculate a point estimate of the median oxide thickness for all wafers in the population.
Median = 0.5 (n +1)th term
0.5(25) = 12.5th term ;
(12th + 13 th term)/2
(423 + 426) / 2
= 849/2
= 424.5
(e) Calculate a point estimate of the proportion of wafers in the population that have oxide thickness greater than 430 angstrom
Number of oxide thickness greater than 430 = 6
(number greater than 430 / total number of oxides)
= 6 / 24
= 1/4
= 0.25