Step-by-step explanation:
1) N₂ + O₂ → 2 NO
Kc = [NO]² / ([N₂] [O₂])
Set up an ICE table:
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\N_(2)&0.114&-x&0.114-x\\O_(2)&0.114&-x&0.114-x\\NO&0&+2x&2x\end{array}\right]](https://img.qammunity.org/2021/formulas/physics/college/k8ulv8glsgogktswz49fscsvstj3kjixz2.png)
Plug into the equilibrium equation and solve for x.
1.00×10⁻⁵ = (2x)² / ((0.114 − x) (0.114 − x))
1.00×10⁻⁵ = (2x)² / (0.114 − x)²
√(1.00×10⁻⁵) = 2x / (0.114 − x)
0.00316 = 2x / (0.114 − x)
0.00361 − 0.00316x = 2x
0.00361 = 2.00316x
x = 0.00018
The volume is 1.00 L, so the concentrations at equilibrium are:
[N₂] = 0.114 − x = 0.11382
[O₂] = 0.114 − x = 0.11382
[NO] = 2x = 0.00036
2(a) Cl₂ → 2 Cl
Kc = [Cl]² / [Cl₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\Cl_(2)&2.0&-x&2.0-x\\Cl&0&+2x&2x\end{array}\right]](https://img.qammunity.org/2021/formulas/physics/college/k4usqkezyll3icegx5dh09d5n739qswjt0.png)
1.2×10⁻⁷ = (2x)² / (2 − x)
1.2×10⁻⁷ (2 − x) = 4x²
2.4×10⁻⁷ − 1.2×10⁻⁷ x = 4x²
2.4×10⁻⁷ ≈ 4x²
x² ≈ 6×10⁻⁸
x ≈ 0.000245
2x ≈ 0.00049
2(b) F₂ → 2 F
Kc = [F]² / [F₂]
![\left[\begin{array}{cccc}&Initial&Change&Equilibrium\\F_(2)&2.0&-x&2.0-x\\F&0&+2x&2x\end{array}\right]](https://img.qammunity.org/2021/formulas/physics/college/6ipntbmkyipt3fw3la0bdfuew39inyp7x0.png)
1.2×10⁻⁴ = (2x)² / (2 − x)
1.2×10⁻⁴ (2 − x) = 4x²
2.4×10⁻⁴ − 1.2×10⁻⁴ x = 4x²
2.4×10⁻⁴ ≈ 4x²
x² ≈ 6×10⁻⁵
x ≈ 0.00775
2x ≈ 0.0155
F₂ dissociates more, so Cl₂ is more stable at 1000 K.