13.3k views
2 votes
Factor.

64x^12+27y^3

2 Answers

2 votes


\\ \rm\Rrightarrow 64x^(12)+27y^3


\\ \rm\Rrightarrow 4^3x^3x^6x^3+3^3y^3


\\ \rm\Rrightarrow (4xxxx)^3+(3y)^3


\\ \rm\Rrightarrow (4x^3)^3+(3y)^3

  • a^3+b^3=(a+b)(a^2+ab+b^2)


\\ \rm\Rrightarrow (4x^3+3y)(16x^6+12x^3y+9y^2)

User Dymphna
by
4.3k points
7 votes

Answer:

(4x^4 + 3y) * (16x^8 - 12x^4 y + 9y^2)

Explanation:

rewrite 64x^12 as (4x^4)^3

(4x^4)^3 + 27y^3

rewrite 27y^3 as (3y)^3

a^3+b^3=(a+b)(a^2 - ab + b^2)

(4x^4 + 3y) ((4x^4)^2 - (4x^4 * (3y) + (3y)^2)

User Dmarvs
by
4.5k points