Answer:
The coefficient of correlation is 0.7098.
Explanation:
The correlation coefficient is a statistical degree that computes the strength of the linear relationship amid the relative movements of the two variables (i.e. dependent and independent).It ranges from -1 to +1.
The formula to compute the correlation coefficient is:
![r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot\sum X^(2)-(\sum X)^(2)][n\cdot\sum Y^(2)-(\sum Y)^(2)]}}](https://img.qammunity.org/2021/formulas/mathematics/college/76d5y5j2p0c0aygvvcj2nyvf6u888zfez6.png)
The required values are computed in the Excel sheet attached below.
Compute the value of r as follows:
![r=\frac{n\cdot \sum XY-\sum X\cdot \sum Y}{\sqrt{[n\cdot\sum X^(2)-(\sum X)^(2)][n\cdot\sum Y^(2)-(\sum Y)^(2)]}}](https://img.qammunity.org/2021/formulas/mathematics/college/76d5y5j2p0c0aygvvcj2nyvf6u888zfez6.png)
![=\frac{(6\cdot 4877.5)-(303.3\cdot 96.3)}{\sqrt{[(6\cdot15367.3)-(303.3)^(2)][(6\cdot1550.7)-(96.3)^(2)]}}\\\\=(57.21)/(80.597)\\\\=0.70983\\\\\approx 0.7098](https://img.qammunity.org/2021/formulas/mathematics/college/pb2gcabu2j1o4c38wkxpkcg5x2sae3qbfr.png)
Thus, the coefficient of correlation is 0.7098.