Explanation:
Let vertical height of ladder from ground be y and
horizontal distance of the base of the ladder from the wall be x respectively.
Length of the ladder = l (constant) = 10 ft
Using Pythagoras theorem:
![{l}^(2) = {y}^(2) + {x}^(2)](https://img.qammunity.org/2021/formulas/mathematics/college/c9oszvntpeepvzvz31jvs3omf3cj8jerhx.png)
Differentiate both sides w.r.t time
![0 = 2y (dy)/(dt) + 2x (dx)/(dt)](https://img.qammunity.org/2021/formulas/mathematics/college/6lobj15erpr16dhvicjhnae7zjqee6pecd.png)
![y (dy)/(dt) + x (dx)/(dt) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/gni3t6ulagks15fg8bm6c3i9xw1svtflpk.png)
We know that (After 1 sec, y = 6 ft and x = 8 ft ; dy/dt = 2 ft/sec)
![6* 2 + 8(dx)/(dt) = 0](https://img.qammunity.org/2021/formulas/mathematics/college/f3tzhj1qzeulone9atddjo80n214a7p7dj.png)
![(dx)/(dt) = - 1.5 ft \: per \: sec](https://img.qammunity.org/2021/formulas/mathematics/college/uemvucz7bq1xido6byrxfmn19t9pk6s8c3.png)
( Ignore - ive sign)
Therefore, bottom of the ladder is sliding away from the wall at a speed of 1.5 ft/sec one second after the ladder starts sliding.