Answer:
![\displaystyle y' = (-5)/(2x^6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/f32xb91cwo3xlgzqdxoz5kj3an43ee16hx.png)
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
![\displaystyle (d)/(dx) [cf(x)] = c \cdot f'(x)](https://img.qammunity.org/2021/formulas/mathematics/college/bz16ipe6p14y3f6abzxt2zy0j41tg530u9.png)
Basic Power Rule:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Explanation:
Step 1: Define
Identify
![\displaystyle y = (1)/(2x^5)](https://img.qammunity.org/2021/formulas/mathematics/high-school/gi7wo8fo3ahfn9uwa7gikrej7tre22lqkd.png)
Step 2: Differentiate
- Rewrite:
![\displaystyle y = (x^(-5))/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/mxa94vzlyt3xcbqi21ha62cff0iq2f8ndj.png)
- Derivative Property [Multiplied Constant]:
![\displaystyle y' = (1)/(2) (d)/(dx)[x^(-5)]](https://img.qammunity.org/2021/formulas/mathematics/high-school/h4f2ss2o8ijhvlu52pacbb0fpxs9zmk9yh.png)
- Basic Power Rule:
![\displaystyle y' = (1)/(2)(-5x^(-6))](https://img.qammunity.org/2021/formulas/mathematics/high-school/ss38g3yp1uprg5qmxmxo2e14wvu9nneiod.png)
- Simplify:
![\displaystyle y' = (-5)/(2x^6)](https://img.qammunity.org/2021/formulas/mathematics/high-school/f32xb91cwo3xlgzqdxoz5kj3an43ee16hx.png)
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Differentiation