Answer:
- 0.01688496
- 0.3449537
- 0.05002308
- 2.0375623
- 0.4162862
Explanation:
Some formulas to help
- log ab = log a + log b
- log a/b = log a - log b
- log a^b = b log a
- antilog (log a) = a, antilog is the inverse of log
- get values of log and antilog by using calculator or online calculator ( I used online calculator for this problem)
- round numbers as required, I left them as is
1. Let the number be x, solving to show the method
- √0.0002851 = x
- log √0.0002851 = log x
- 1/2 log 0.0002851 = log x
- 1/2(-3.545) = log x
- log x = -1.7725
- antilog (log x) = antilog (-1.7725)
- x = 0.01688496
2. Short of the above method, will apply to this and following
=- antilog (1/7 log (0.0005812)) =
- antilog (1/7(-3.23567439437)) =
- antilog (-0.46223919919) =
- 0.3449537
3. .........................................
- 2.714^3 =
- antilog (log 2.714^3) =
- antilog (3 log 2.714) =
- antilog (3*0.43360984332) =
- antilog (1.30082952996) =
- 0.05002308
4..........................................
- 35.12^(1/5) =
- antilog (1/5 log (35.12)) =
- antilog (1/5*1.54555450723)
- antilog (0.30911090144) =
- 2.0375623
5. .........................................
- (0.07214)^(1/3) =
- antilog ( 1/3 log (0.07214)) =
- antilog (1/3*(-1.14182386202 )) =
- antilog ( --0.380607954 )=
- 0.4162862
Let me know if anything is not clear. Hope it helps.