210k views
4 votes
Identify the intervals on which each quadratic function is positive. Part 2

4. y = -x^2 + 4x + 12
5. y = 2x^2 + 12x + 18
6. y = 5x^2 - 3x - 8

1 Answer

2 votes

Answer: 4) (-2, 6)

5) (-∞, -3) U (-3, ∞)

6) (-∞, -1) U (8/5, ∞)

Explanation:

Find the zeros.

When the a-value is positive, the curve will be positive to the left of the leftmost zero and to the right of the rightmost zero. + - +

←---|----|--→

When the a-value is negative, the curve will be positive between the zeros.

- + -

←---|----|--→

4) y = -x² + 4x + 12

y = -(x² - 4x - 12)

y = -(x + 2)(x - 6)

0 = -(x + 2)(x - 6)

0 = x + 2 0 = x - 6 -- + --

x = -2 x = 6 ←------|-----------|--------→

-2 6

Positive Interval: (-2, 6)

5) y = 2x² + 12x + 18

y = 2(x² + 6x + 9)

y = 2(x + 3)(x + 3)

0 = 2(x + 3)(x + 3)

0 = x + 3 0 = x + 3 + +

x = -3 x = -3 ←---------|----------→

-3

Positive Interval: (-∞, -3) U (-3, ∞)

6) y = 5x² - 3x - 8

y = 5x² + 5x - 8x - 8

y = 5x(x + 1) - 8(x + 1)

y = (5x - 8)(x + 1)

0 = (5x - 8)(x + 1)

0 = 5x - 8 0 = x + 1 + -- +

x = 8/5 x = -1 ←------|-----------|--------→

-1 8/5

Positive Interval: (-∞, -1) U (8/5, ∞)

User Saeed Hassanvand
by
4.4k points