Answer:
Explanation:
![\sf \cfrac{3x-2}{4}-\cfrac{2x-5}{3}=\cfrac{1+x}{6}](https://img.qammunity.org/2023/formulas/mathematics/high-school/5402tji9ct4rkk3oom98vr301ij52gn1w6.png)
First, let's find the LCM of 4, 3, and 6.
How to find the LCM:
→ List multiples of each number.
→ Find the smallest number on each list.
4: 4, 8, 12, 16, 20, 24..
3: 3, 6, 9, 12, 15, 18, 21, 24, 27....
6: 6, 12, 18, 24, 30, 36, 42...
LCM: 12
_________
Now, we'll Multiply by LCM:
![\sf \cfrac{3x-2}{4}* \:12-\cfrac{2x-5}{3}* \:12=\cfrac{1+x}{6}* \:12](https://img.qammunity.org/2023/formulas/mathematics/high-school/a9x01lmr6wk3tp9lts3987pdy7jzk61au4.png)
Simplify:
![\sf 3\left(3x-2\right)-4\left(2x-5\right)=2\left(x+1\right)](https://img.qammunity.org/2023/formulas/mathematics/high-school/1fhtk9ojklo9ce939x5kc40id23m2xaipt.png)
Now, expand, Apply the Distributive property:
![\bold{ 3\left(3x-2\right)-4\left(2x-5\right)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/art09lqq9wm46eyqf0g76hf4ps8a8z1tqo.png)
![\sf 9x-6-8x+20](https://img.qammunity.org/2023/formulas/mathematics/high-school/a83979fchlhzb3litdzkmmc2kh9tmdzd4t.png)
Combine like terms:
![\sf x+14](https://img.qammunity.org/2023/formulas/mathematics/high-school/5u5vm43k8ozxz4hsohw90lxb8wm351q4xz.png)
________
![\bold{ 2\left(x+1\right)}](https://img.qammunity.org/2023/formulas/mathematics/high-school/rihodmf12vv6sww60k6pul2xpz4bufndc4.png)
![\sf 2x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/7j25h974ed0iupmc4losw9ztqdfg522o96.png)
![\sf x+14=2x+2](https://img.qammunity.org/2023/formulas/mathematics/high-school/japbkantsngfzehehayw7utqp9r55cit75.png)
Subtract 14 from both sides:
![\sf x+14-14=2x+2-14](https://img.qammunity.org/2023/formulas/mathematics/high-school/pwvrh2gs8vdm987bmpgxxh64p2vabxui8e.png)
Simplify:
![\sf x=2x-12](https://img.qammunity.org/2023/formulas/mathematics/high-school/cgs2npbst1j3cwf3khm2jqpbirape51uns.png)
Subtract 2x from both sides:
![\sf x-2x=2x-12-2x](https://img.qammunity.org/2023/formulas/mathematics/high-school/aa2gk3bk1zevz8oibcw54se4keaj423tin.png)
Simplify:
![\sf -x=-12](https://img.qammunity.org/2023/formulas/mathematics/high-school/hhfvxgpwix6ylmasjlyetqk8v2leb82j8h.png)
Divide both sides by -1:
![\sf \cfrac{-x}{-1}=\cfrac{-12}{-1}](https://img.qammunity.org/2023/formulas/mathematics/high-school/xiqv1smltwjyq8ztwd37698uq7o48qlkxk.png)
![\sf x=12](https://img.qammunity.org/2023/formulas/mathematics/high-school/s4qfd84c0aqw2s04iykm3yy8wbbie6pq9i.png)
____________________________