343,843 views
28 votes
28 votes
2- If A=(3, 4) and B = (7,8), find AB.​

User Sayem
by
2.8k points

2 Answers

21 votes
21 votes


\huge \tt \color{pink}{A}\color{blue}{n}\color{red}{s}\color{green}{w}\color{grey}{e}\color{purple}{r }


\large\underline{ \boxed{ \sf{✰\:Important\: points }}}

➢ Here question is asking to find the distance between points "A" and "B"

➢we can easily solve such ques by understanding a simple concept of Euclidean distance formula

➢ DISTANCE FORMULA :- Any algebraic expression that gives the distance between two points in a particular coordinate system in a particular number of dimensions


\rule{80mm}{2.5pt}


{ \boxed{✜\underline{ \boxed{ \sf{Distance \: Formula = \sqrt{{(x_2 - x_1)}^(2) + {(y_2 - y_1) }^(2) } }}}✜}}

★ Here


  • \sf \:➣ x_2 = 7 \\

  • \sf➣x_1=3


  • \sf➣y_2=8


  • \sf➣y_1=4


\rule{80mm}{2.5pt}


\large\underline{ \boxed{ \sf{✰\:Now\: substitute\:value}}}


\sf \: ➛ \: distance = \sqrt{{(x_2 - x_1)}^(2) + {(y_2 - y_1) }^(2)} \\ \sf \: ➛distance = \sqrt{{(7 - 3)}^(2) + {(8 - 4) }^(2)} \\ \sf ➛solving \: bracket\\ \sf \: ➛distance =\sqrt{{(4)}^(2) + {(4) }^(2)} \\ \sf \: ➛solving \: square \: roots \\ \sf \: ➛distance = √(32) \\ \sf \: ➛distance = √(16 * 2) \\ \sf \: ➛distance = √(4 * 4 * 2) \\ \sf \: ➛distance =4 √(2) units


\rule{80mm}{2.5pt}

Hence distance of AB =


{ \boxed{✟\underline{ \boxed{ \sf{\: AB=4 √(2)units {\green ✓}}}}✟}}

Hope it helps !

User Aemkei
by
2.5k points
12 votes
12 votes

Use distance formula and take this question down, easily.

Explanation:

Distance xy =


\sqrt{ {(x_2 - x_1) }^(2) + {(y_2 - y_1)}^(2) }

Therefore AB

=
√((7-3)^2 +(8-4)^2)

=
√((4)^2 +(4)^2)

=
√(32)

=
\boxed{4 √(2)-units}

User Tyler Carberry
by
2.9k points