438,384 views
28 votes
28 votes
Here's the question, please help!

Here's the question, please help!-example-1
User Josh Sklare
by
2.6k points

2 Answers

7 votes
7 votes
  • x=2sint
  • y=3sint

#1

  • x²/2+y²/3
  • (2sint)²/2+(3sint)²/3
  • 4sin²t/2+9sim²t/3
  • 2sin²t+3sim²t
  • 5sin²t

False

#2

  • x²+y²
  • 4sin²t+9sin²t
  • 13sin²t

False

#3

  • 3x²+2y²
  • 3(4sin²t)+2(9sin²t)
  • 12sin²+18sin²t
  • 30sin²t

False

None of the above

User HotDogCannon
by
2.9k points
20 votes
20 votes

Answer:

None of these

Explanation:

To convert the parametric curve into Cartesian form,
rewrite the equation for
x to make
\sin t the subject:


x=2\sin t


\implies \sin t=(x)/(2)

Substitute this into the given equation for
y:


\begin{aligned}y & =3 \sin t\\\implies y & = 3 \left((x)/(2)\right)\\y& = (3)/(2)x\end{aligned}

Therefore, the Cartesian form of the parametric curve is:


y=(3)/(2)x

Further Information


(x^2)/(2)+(y^2)/(3)=1 \quad \textsf{is the equation of a vertical ellipse}


\textsf{with center (0, 0), co-vertex }\sf √(2), \textsf{ and vertex }√(3)


x^2+y^2=6 \quad \textsf{is the equation of a circle}


\textsf{with center (0, 0) and radius }\sf √(6)


3x^2+2y^2=1 \quad \textsf{is the equation of a vertical ellipse}


\textsf{with center (0, 0), co-vertex }\sf (√(3))/(3), \textsf{ and vertex }(√(2))/(2)

User Esso
by
3.5k points