Answer:
(a)
![V_B=11.68L](https://img.qammunity.org/2021/formulas/chemistry/college/4vinqfk55yim99bn1ombmtpu66m7e1lafk.png)
(b)
![x_(He)=0.533](https://img.qammunity.org/2021/formulas/chemistry/college/1iy852yk0e10fl245bpzyyk5n2o8ppgi8k.png)
Step-by-step explanation:
Hello,
In this case, since the both gases behave ideally, with the given information we can compute the moles of He in A:
![n_A=(0.082(atm*L)/(mol*K)*298K)/(1.974 atm*6.00L)=2.063mol](https://img.qammunity.org/2021/formulas/chemistry/college/mc09ttz27knzzdqtyn3s54ri33856tg9yz.png)
Thus, since the final pressure is 3.60 bar, we can write:
![P=x_(Ar)P_A+x_(He)P_B\\\\P=(n_(Ar))/(n_(Ar)+n_(He)) P_A+(n_(He))/(n_(Ar)+n_(He)) P_B\\\\3.60bar=(2.063mol)/(2.063mol+n_(He)) *2.00bar+(n_(He))/(2.063mol+n_(He)) *5.00bar](https://img.qammunity.org/2021/formulas/chemistry/college/pry9uodn61n7oktfyipups099ns9e17p7g.png)
The moles of helium could be computed via solver as:
![n_(He)=2.358mol](https://img.qammunity.org/2021/formulas/chemistry/college/cco1sui6aug0udk43byihadmz7tdkgbwxy.png)
Or algebraically:
![3.60bar=(1)/(2.063mol+n_(He)) *(4.0126+5.00*n_(He))\\\\7.314+3.60n_(He)=4.013+5.00*n_(He)\\\\7.314-4.013=5.00*n_(He)-3.60n_(He)\\\\n_(He)=(3.3)/(1.4)=2.358mol](https://img.qammunity.org/2021/formulas/chemistry/college/187eu5ebqpltsapjovjmommmtuilpidv9y.png)
In such a way, the volume of the compartment B is:
![V_B=(n_(He)RT)/(P_B)=(2.358mol*0.082(atm*L)/(mol*K)*298.15K)/(4.935atm)\\ \\V_B=11.68L](https://img.qammunity.org/2021/formulas/chemistry/college/vfnwt7dmslelzpqlsmmjz0jyjuwd877gux.png)
Finally, he mole fraction of He is:
![x_(He)=(2.358)/(2.358+2.063)\\ \\x_(He)=0.533](https://img.qammunity.org/2021/formulas/chemistry/college/vsppgs7v8047ou0f8jofh76bfdszlglv2a.png)
Regards.