143,062 views
26 votes
26 votes
73-74 express the limit as a definite integral.

73.
\lim _(n \rightarrow \infty) \sum_(i=1)^(n) (i^(4))/(n^(5)) [hint: consider
$f\mleft(x\mright)=x^4$.\rbrack

User Nicoptere
by
2.5k points

1 Answer

21 votes
21 votes

Pull out a factor of 1/n from the summand and the result follows.


\displaystyle \lim_(n\to\infty) \sum_(i=1)^n (i^4)/(n^5) = \lim_(n\to\infty) \frac1n \sum_(i=1)^n \left(\frac in\right)^4 = \boxed{\int_0^1 x^4 \, dx}

User Kerstomaat
by
2.7k points