Answer:
![R=(QJ)/(I^2t)](https://img.qammunity.org/2021/formulas/mathematics/college/loxp01dnnuww3kapj4avjpad5x2fxged3v.png)
Explanation:
So we have the equation:
![Q=(I^2Rt)/(J)](https://img.qammunity.org/2021/formulas/mathematics/college/mh6mdp9adu3hkx1qcinsd9y9q16a8ga01h.png)
And we want to solve for R.
First, let's multiply both sides by J to remove the fraction on the right. So:
![(J)Q=(J)(I^2Rt)/(J)](https://img.qammunity.org/2021/formulas/mathematics/college/nbyliseibx8m2n2st6wm3dqr3ph1c83smv.png)
Simplify the right:
![JQ=I^2Rt](https://img.qammunity.org/2021/formulas/mathematics/college/rkyigbeub4cbaye899ch5zj1sl4v16bsf9.png)
We can rewrite our equation as:
![JQ=R(I^2t)](https://img.qammunity.org/2021/formulas/mathematics/college/b2oyy9ckg43u8wl7u3o6eg2m6975l3csl0.png)
So, to isolate the R variable, divide both sides by I²t:
![(JQ)/(I^2t)=(R(I^2t))/(I^2t)](https://img.qammunity.org/2021/formulas/mathematics/college/v0n867l6i3ks75zvp1mfijw51ur0vr3dia.png)
The right side cancels, so:
![R=(QJ)/(I^2t)](https://img.qammunity.org/2021/formulas/mathematics/college/loxp01dnnuww3kapj4avjpad5x2fxged3v.png)
And we are done!