Answer:
270 mi/h
Step-by-step explanation:
Given that,
To the south,
v₁ = 300 mi/h, t₁ = 2 h
We can find distance, d₁
![d_1=v_1* t_1\\\\d_1=300* 2\\\\d_1=600\ \text{miles}](https://img.qammunity.org/2021/formulas/physics/high-school/wtc18ef1136ikuuy1laoytm0046hz0dd7u.png)
To the north,
v₂ = 250 mi/h, d₂ = 750 miles
We can find time, t₂
![t_2=(d_2)/(v_2)\\\\t_2=\frac{750\ \text{miles}}{250\ \text{mi/h}}\\\\t_2=3\ h](https://img.qammunity.org/2021/formulas/physics/high-school/lmrl96l23jvtopz0h9lxwswedxvve3aq1e.png)
Now,
Average speed = total distance/total time
![V=(d_1+d_2)/(t_1+t_2)\\\\V=(600+750)/(2+3)\\\\V=270\ \text{mi/h}](https://img.qammunity.org/2021/formulas/physics/high-school/mfp87lnf4p7w41nm1vlgov1i839chej5ww.png)
Hence, the average speed for the trip is 270 mi/h.