Answer: see proof below
Explanation:
Given: A + B + C = π → A + B = π - C
→ C = π - (A + B)
Use the Cofunction Identities: sin (π/2 - A) = cos A
cos (π/2 - A) = sin A
Use the Double Angle Identity: cos 2A = 1 - 2 sin² A
Use Sum to Product Identity: cos A - cos B = 2 sin [(A+B)/2] · sin [(A-B)/2]
Proof LHS → RHS:
![\text{LHS:}\qquad \qquad \sin \bigg((A)/(2)\bigg)+\sin \bigg((B)/(2)\bigg)+\sin \bigg((C)/(2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/if7lv1es49oa4jvc0ts6ljl6apwtz7cfvy.png)
![\text{Given:}\qquad \quad \sin \bigg((A)/(2)\bigg)+\sin \bigg((B)/(2)\bigg)+\sin \bigg((\pi-(A+B))/(2)\bigg)\\\\\\.\qquad \qquad =\sin \bigg((A)/(2)\bigg)+\sin \bigg((B)/(2)\bigg)+\sin \bigg((\pi)/(2)-(A+B)/(2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/ku5hisfwilh4vlznjy58b3tpnu9zrdaz5q.png)
![\text{Cofunction:}\qquad \sin \bigg((A)/(2)\bigg)+\sin \bigg((B)/(2)\bigg)+\cos \bigg((A+B)/(2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/42z6nyrlxlkfzh24tg4m8gkapwz77baal9.png)
![\text{Sum to Product:}\quad 2\sin \bigg((A+B)/(2\cdot 2)\bigg)\cdot\cos \bigg((A-B)/(2\cdot 2)\bigg)+\cos \bigg((A+B)/(2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/v8ka4mjarkcj4lyo8eq1g5rsros8syxsca.png)
![\text{Double Angle:}\qquad 2\sin \bigg((A+B)/(4)\bigg)\cdot\cos \bigg((A-B)/(4)\bigg)+1-2\sin^2 \bigg((A+B)/(2\cdot 2)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/dqywi8qd2ltqig222fx91ad7adke5ofuo1.png)
![\text{Factor:}\qquad \qquad 1+2\sin \bigg((A+B)/(4)\bigg)\bigg[\cos \bigg((A-B)/(4)\bigg)-\sin \bigg((A+B)/(4)\bigg)\bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/md8z0qwui72mya5ob84moor1vqt2bdew3w.png)
![\text{Cofunction:}\qquad 1+2\sin \bigg((A+B)/(4)\bigg)\bigg[\cos \bigg((A-B)/(4)\bigg)-\cos \bigg((\pi)/(2)-(A+B)/(4)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+2\sin \bigg((A+B)/(4)\bigg)\bigg[\cos \bigg((A-B)/(4)\bigg)-\sin \bigg((2\pi -(A+B))/(4)\bigg)\bigg]](https://img.qammunity.org/2021/formulas/mathematics/high-school/53o5qxtwr7dydrqltuym6q9bc85iy215yi.png)
![\text{Sum to Product:}\quad 1+2\sin \bigg((A+B)/(4)\bigg)\bigg[2 \sin \bigg((2\pi-2B)/(2\cdot 4)\bigg)\cdot \sin \bigg((2A-2\pi)/(2\cdot 4)\bigg)\bigg]\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg((A+B)/(4)\bigg)\cdot \sin \bigg((\pi-B)/(4)\bigg)\cdot \sin \bigg((\pi -A)/(4)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/tl7xn7kanwnj5o8m47alcvls1x231if42s.png)
![\text{Given:}\qquad \qquad 1+4\sin \bigg((\pi-C)/(4)\bigg)\cdot \sin \bigg((\pi-B)/(4)\bigg)\cdot \sin \bigg((\pi -A)/(4)\bigg)\\\\\\.\qquad \qquad \qquad =1+4\sin \bigg((\pi-A)/(4)\bigg)\cdot \sin \bigg((\pi-B)/(4)\bigg)\cdot \sin \bigg((\pi -C)/(4)\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/pg5oze846v4macfyw6bf8h6culbeid9wug.png)
LHS = RHS
![\checkmark](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2v4z11vsn0bdvhj920fbk7f97ux40axw6u.png)