Answer:
Proved
Explanation:
Given
![1+5+9+...+[4(n-1)+1]+[4n+1] = (n+1)(2n+1)](https://img.qammunity.org/2021/formulas/mathematics/college/4cbiwty6dcerhignra4fv8gr0n8jaf7ze0.png)

Required
Prove by induction
![1+5+9+...+[4(n-1)+1]+[4n+1] = (n+1)(2n+1)](https://img.qammunity.org/2021/formulas/mathematics/college/4cbiwty6dcerhignra4fv8gr0n8jaf7ze0.png)
Increment n by 1 on both sides
![1+5+9+...+[4(n-1)+1]+[4n+1]+[4(n+1)+1] = (n+1+1)(2(n+1)+1)](https://img.qammunity.org/2021/formulas/mathematics/college/1qyntozf96sbl4cbhljlfr1u2nst71vsgn.png)
Simplify the right hand side
![1+5+9+...+[4(n-1)+1]+[4n+1]+[4(n+1)+1] = (n+2)(2n+2+1)](https://img.qammunity.org/2021/formulas/mathematics/college/vz7t1i4zn0kn3opovhwi9zlpms0td5zve8.png)
![1+5+9+...+[4(n-1)+1]+[4n+1]+[4(n+1)+1] = (n+2)(2n+3)](https://img.qammunity.org/2021/formulas/mathematics/college/btson45d3ds7xcqfpl421dyqqr4skgitlz.png)
Group the left hand side
![(1+5+9+...+[4(n-1)+1]+[4n+1])+[4(n+1)+1] = (n+2)(2n+3)](https://img.qammunity.org/2021/formulas/mathematics/college/vaocgdhe3s3027htginsocz6kqf2geh4ug.png)
Recall that
----[Given]
So; Substitute
for
on the left hand side
![(n+1)(2n+1)+[4(n+1)+1] = (n+2)(2n+3)](https://img.qammunity.org/2021/formulas/mathematics/college/vxmkatyjhak1fgvqhmgd6vd5tckimpqplg.png)
Open All Brackets

Collect Like Terms


Notice that the expression on both sides are equal;
Hence, the given expression has been proven