Answer:
![x=\pm 3\text{ or } x=\pm 2i](https://img.qammunity.org/2021/formulas/mathematics/high-school/u0yw1w7oy0kr8mcqz6tsasurzkk5k2wso1.png)
Explanation:
So we have the equation:
![x^4-5x^2-36=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/curueskqhq6w5qutx3zhiemngxqfxzzoko.png)
Let's let u equal x² so:
![u^2-5u-36=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/o0om0lywaqcj9jeeuls6k2cvzpw15u3hhh.png)
Factor. We can use -9 and 4. So:
![u^2+4u-9u-36=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/hfld89zn61q963p7jwbeqviv34g9n0mtf6.png)
From the first two terms, factor out a u.
From the last two terms, factor out a -9. So:
![u(u+4)-9(u+4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/k9b7sjf71wec97n7zvveu9cldkjzdc9fuw.png)
Grouping:
![(u-9)(u+4)=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/bnmnmapjvfqc87591aqea50qdlqxulfp5z.png)
Zero Product Property:
![u-9=0 \text{ or } u+4=0](https://img.qammunity.org/2021/formulas/mathematics/high-school/kjvufclfe8ewuu7x7d3him6ygb0oyigz43.png)
On the left, add 9. On the right, subtract 4:
![u=9\text{ or } u=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/wguh2i47myqme2geipk08w34ogjr3xtf71.png)
Substitute back u:
![x^2=9\text{ or } x^2=-4](https://img.qammunity.org/2021/formulas/mathematics/high-school/oazoiicqx2jv5541wqe9wmedsjgio6njm5.png)
Take the square root:
![x=\pm 3\text{ or } x=\pm 2i](https://img.qammunity.org/2021/formulas/mathematics/high-school/u0yw1w7oy0kr8mcqz6tsasurzkk5k2wso1.png)
And we're done!
Our answer is the Second option.