199k views
5 votes
Let X1,..., Xn be a simple random sample from a distribution with density function Svorvo-1 O<331 fx (2:0) = otherwise where e > 0 is an unknown parameter.

(a) Find a MOM estimator for 0.
(b) If the observations are 1 1 1 2'3'2 Determine the point estimate with the estimator you find in part (a).

User Horse
by
5.4k points

1 Answer

2 votes

Answer:

The method of moment (MOM) estimator as:
\mathbf{\hat {\theta} =((\overline X)/(1-\overline X))^2}


\overline X = (4)/(9)


\mathbf{\hat {\theta} =(16)/(25) }

Explanation:

From the question, the correct format for the probability density function is:


fx(x ; \theta) = \left \{ {{√(\theta x)^(√(\theta)-1)}\ \ 0 \leq x \leq 1 \atop {0} \ \ \ \ \ \ \ otherwise } \right.

where θ > 0 is an unknown parameter.

(a) The MOM estimator can be calculated as follows:


E(X) = \int ^1_0x. √(\theta) \ x^(√(\theta)-1) \ dx


E(X) = \int ^1_0 √(\theta) \ x^(√(\theta)) \ dx


E(X) = (√(\theta) )/(√(\theta) +1 ) ( x ^(√(\theta)+1))^1_0


E(X) = (√(\theta) )/(√(\theta) +1 )

suppose E(X) =
\overline X

Then;


\overline X = (√(\theta) )/(√(\theta) +1 )


(1)/(\overline X) = (√(\theta) +1 )/(√(\theta))


(1)/(\overline X) =1 + (1)/(√(\theta))

making
(1)/(√(\theta)) the subject of the formula, we have:


(1)/(√(\theta)) =(1)/(\overline X) - 1


(1)/(√(\theta)) =(1-\overline X)/(\overline X)


√(\theta) =(\overline X)/(1-\overline X)

squaring both sides, we have:

The method of moment (MOM) estimator as:
\mathbf{\hat {\theta} =((\overline X)/(1-\overline X))^2}

b) If the observations are
(1)/(2), (1)/(3), (1)/(2)

Then,


\overline X = ((1)/(2)+ (1)/(3)+(1)/(2))/(3)


\overline X = ((3+2+3)/(6))/(3)


\overline X = ((8)/(6))/(3)


\overline X = (8)/(6) * (1)/(3)


\overline X = (8)/(18)


\overline X = (4)/(9)

Finally, the point estimate of the estimator
\theta is


\mathbf{\hat {\theta} =\begin {pmatrix} ((4)/(9))/(1-(4)/(9)) \end {pmatrix}^2}


\mathbf{\hat {\theta} =\begin {pmatrix} ((4)/(9))/((5)/(9)) \end {pmatrix}^2}


\mathbf{\hat {\theta} =\begin {pmatrix} (4)/(5) \end {pmatrix}^2}


\mathbf{\hat {\theta} =(16)/(25) }

User Cleber Goncalves
by
5.9k points