Answer:
The method of moment (MOM) estimator as:
![\mathbf{\hat {\theta} =((\overline X)/(1-\overline X))^2}](https://img.qammunity.org/2021/formulas/mathematics/college/ikwybes19j9um7f0lzjwa39zaono631h34.png)
![\overline X = (4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/uaxhv9l9by8etjat51o9ru7qx9aj51w23f.png)
![\mathbf{\hat {\theta} =(16)/(25) }](https://img.qammunity.org/2021/formulas/mathematics/college/di66p1d88akolkdi4w1qg59r1krr0l452z.png)
Explanation:
From the question, the correct format for the probability density function is:
![fx(x ; \theta) = \left \{ {{√(\theta x)^(√(\theta)-1)}\ \ 0 \leq x \leq 1 \atop {0} \ \ \ \ \ \ \ otherwise } \right.](https://img.qammunity.org/2021/formulas/mathematics/college/epcw60xal3rj36n2wvpp0l0sp9ylfngq3y.png)
where θ > 0 is an unknown parameter.
(a) The MOM estimator can be calculated as follows:
![E(X) = \int ^1_0x. √(\theta) \ x^(√(\theta)-1) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/d4rlgrxtllw5wuwpjg5ztqrl0geohw08os.png)
![E(X) = \int ^1_0 √(\theta) \ x^(√(\theta)) \ dx](https://img.qammunity.org/2021/formulas/mathematics/college/qqnvrpd6d6jv9xkc075oyr25ad0woz6b26.png)
![E(X) = (√(\theta) )/(√(\theta) +1 ) ( x ^(√(\theta)+1))^1_0](https://img.qammunity.org/2021/formulas/mathematics/college/5le7z81blznchhjbgsfal70b7lpzo2w8cr.png)
![E(X) = (√(\theta) )/(√(\theta) +1 )](https://img.qammunity.org/2021/formulas/mathematics/college/biqe49agk2w49jt3hisqblu4d47g3ad15i.png)
suppose E(X) =
![\overline X](https://img.qammunity.org/2021/formulas/mathematics/college/blu1wdsnkwek9k2dqd1tt7rsrk4pjwnrdt.png)
Then;
![\overline X = (√(\theta) )/(√(\theta) +1 )](https://img.qammunity.org/2021/formulas/mathematics/college/ht5szg1nqjk74n4rakgnpcwk2ndiis3bxx.png)
![(1)/(\overline X) = (√(\theta) +1 )/(√(\theta))](https://img.qammunity.org/2021/formulas/mathematics/college/3ric4ezcu5ypgern1kmb1k6fh7zd7h4mf7.png)
![(1)/(\overline X) =1 + (1)/(√(\theta))](https://img.qammunity.org/2021/formulas/mathematics/college/qqh2kawfwm2udtm4l3ww06qs80vesqswaq.png)
making
the subject of the formula, we have:
![(1)/(√(\theta)) =(1)/(\overline X) - 1](https://img.qammunity.org/2021/formulas/mathematics/college/t5jf942vw33a5u6zfz9u4ebbfv7a4v2i5n.png)
![(1)/(√(\theta)) =(1-\overline X)/(\overline X)](https://img.qammunity.org/2021/formulas/mathematics/college/3vzdu9f7ph2cjox6rctli7dupbt609umf6.png)
![√(\theta) =(\overline X)/(1-\overline X)](https://img.qammunity.org/2021/formulas/mathematics/college/nzoyfcvaojsldiwxby6iy6acucmitqgork.png)
squaring both sides, we have:
The method of moment (MOM) estimator as:
![\mathbf{\hat {\theta} =((\overline X)/(1-\overline X))^2}](https://img.qammunity.org/2021/formulas/mathematics/college/ikwybes19j9um7f0lzjwa39zaono631h34.png)
b) If the observations are
![(1)/(2), (1)/(3), (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/uw9fw78r0f3gbw0otnhor34jh12f9orn3w.png)
Then,
![\overline X = ((1)/(2)+ (1)/(3)+(1)/(2))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/bwwqilaph5y2az0fqz9dwfnc0mezp109q0.png)
![\overline X = ((3+2+3)/(6))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/k53rfla8phuqnob8979617g5mra94tiy0y.png)
![\overline X = ((8)/(6))/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/wrhvl6zailsd775dyzazdg67lh133nwz06.png)
![\overline X = (8)/(6) * (1)/(3)](https://img.qammunity.org/2021/formulas/mathematics/college/k9a7d8cuetm1y4y9m8j3d36mgu2f648iab.png)
![\overline X = (8)/(18)](https://img.qammunity.org/2021/formulas/mathematics/college/1blnyc2w58fl7ch797t15zpgan8iynjq7j.png)
![\overline X = (4)/(9)](https://img.qammunity.org/2021/formulas/mathematics/college/uaxhv9l9by8etjat51o9ru7qx9aj51w23f.png)
Finally, the point estimate of the estimator
is
![\mathbf{\hat {\theta} =\begin {pmatrix} ((4)/(9))/(1-(4)/(9)) \end {pmatrix}^2}](https://img.qammunity.org/2021/formulas/mathematics/college/hw8d54e04zi63x33f2xno5uoyastxa2q2r.png)
![\mathbf{\hat {\theta} =\begin {pmatrix} ((4)/(9))/((5)/(9)) \end {pmatrix}^2}](https://img.qammunity.org/2021/formulas/mathematics/college/h5tyumwy95lgwsj2qzicqep51pwog0x8eg.png)
![\mathbf{\hat {\theta} =\begin {pmatrix} (4)/(5) \end {pmatrix}^2}](https://img.qammunity.org/2021/formulas/mathematics/college/6806mxb67acd98bk3ohmmn8kx2294q4rqd.png)
![\mathbf{\hat {\theta} =(16)/(25) }](https://img.qammunity.org/2021/formulas/mathematics/college/di66p1d88akolkdi4w1qg59r1krr0l452z.png)