29.4k views
2 votes
Write the complex number 4(cos 60 + i sin 60) in standard form 10. Use DeMoivre's Theorem to find (2+3i)6

1 Answer

4 votes

Answer:

a) The standard form of
z = 4\cdot (\cos 60^(\circ)+i\cdot \sin 60^(\circ)) is
z = 2 + i\cdot 2√(3), b)
z = (2+i\cdot 3)^(6) = 1219.585 + i \cdot 1829.381.

Explanation:

a) The standard form of the complex number is
z = a + i\cdot b,
\forall \,a,b \in \mathbb{R}. If we get that
z = 4\cdot (\cos 60^(\circ)+i\cdot \sin 60^(\circ)), whose standard form is obtained by algebraic means:

1)
z = 4\cdot (\cos 60^(\circ)+i\cdot \sin 60^(\circ)) Given

2)
z = (4\cdot \cos 60^(\circ))+i\cdot (4\cdot \sin 60^(\circ)) Distributive and Associative properties.

3)
z = 2 + i\cdot 2√(3) Multiplication/Result.

The standard form of
z = 4\cdot (\cos 60^(\circ)+i\cdot \sin 60^(\circ)) is
z = 2 + i\cdot 2√(3).

b) The De Moivre's Theorem states that:


z = (a+i\cdot b)^(n)= r^(n)\cdot (\cos \theta + i\cdot \sin \theta)

Where:


r =\sqrt{a^(2)+b^(2)} and
\theta = \tan^(-1) \left((b)/(a)\right).

If we know that
z = (2+i\cdot 3)^(6), then:


r = \sqrt{2^(2)+3^(2)}


r =√(13)


r \approx 3.606


\theta = \tan^(-1)\left((3)/(2) \right)


\theta \approx 56.310^(\circ)

The resulting expression is:


z = 3.606^(6)\cdot (\cos 56.310^(\circ)+i\cdot \sin 56.310^(\circ))


z = 1219.585+i\cdot 1829.381

Therefore,
z = (2+i\cdot 3)^(6) = 1219.585 + i \cdot 1829.381.

User Rufusrobot
by
8.3k points