Answer:
Let x represent: the price per lime.
Let y represent: the price per avocado.
System: 6*x + 2*y = $7.50
2*x + y =$3.00
Solution: x = $0.75 y = $1.50
Explanation:
Here we have two variables, x and y.
Let's take x = price per lime, and y = price per avocado.
We know that when he bought 6 limes and 2 avocados he paid $7.50, so we can write this as:
6*x + 2*y = $7.50
And we also know that when he bought 2 limes and 1 avocado, he paid $3.00
2*x + 1*y = $3.00
Then we have a system of equations:
6*x + 2*y = $7.50
2*x + y =$3.00
Now we want to solve this system,
The first step is isolating one of the variables in one of the equations, let's isolate y in the second equation:
y = $3.00 - 2*x
Now we can replace this into the other equation:
6*x + 2*($3.00 - 2*x) = $7.50
6*x + $6.00 - 4*x = $7.50
$6.00 + 2*x = $7.50
2*x = $7.50 - $6.00 = $1.50
x = $1.50/2 = $0.75
now we can find the value of y.
y = $3.00 - 2*x = $3.00 - 2*$0.75 = $1.50