Answer:
D) 42.87 m/s
Step-by-step explanation:
First, find the time it takes him to land. Given in the y direction:
Δy = 60 m
v₀ = 0 m/s
a = 9.8 m/s²
Find: t
Δy = v₀ t + ½ at²
60 m = (0 m/s) t + ½ (9.8 m/s²) t²
t = 3.5 s
Next, find the speed needed to travel the horizontal distance in that time. Given in the x direction:
Δx = 60 m
a = 0 m/s²
t = 3.5 s
Find: v₀
Δy = v₀ t + ½ at²
150 m = v₀ (3.5 s) + ½ (0 m/s²) (3.5 s)²
v₀ = 42.87 m/s