Answer:
k = -3 or 5
Explanation:
The given parameters are;
The line extends from points (-1, 1) to point (2, k)
The length of the line = 5 units
The formula for the length, l, of a line given its coordinates can be found by the following formula;
![l = \sqrt{\left (y_(2)-y_(1) \right )^(2)+\left (x_(2)-x_(1) \right )^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/143mb1g66sq0cuyzshjsodqj0npx20s2bp.png)
Therefore, we have;
![5 = \sqrt{\left (k-1 \right )^(2)+\left (2-(-1) \right )^(2)}](https://img.qammunity.org/2021/formulas/mathematics/high-school/h8ioliw2td7vyl1jx4cfk4bradvkyk0bov.png)
Which, by squaring both sides, gives;
25 = (k - 1)² + (2 - (-1))² = (k - 1)² + (2 + 1)² = (k - 1)² + 3²
25 = (k - 1)² + 3² = k² - 2·k + 1 + 9
25 - 25 = 0 = k² - 2·k + 1 + 9 - 25 = k² - 2·k - 15
0 = k² - 2·k - 15
0 = (k +3) × (k - 5)
Therefore, k = -3 or 5
When k - -3, we have;
![\sqrt{\left ((-3)-1 \right )^(2)+\left (2-(-1) \right )^(2)}= √((-4)^2+3^2) = √(16 + 9) = √(25) = 5](https://img.qammunity.org/2021/formulas/mathematics/high-school/2goo5v4wyh06z6eu70k3uohs9tpgqg5jk4.png)
When k = 5, we have;
![\sqrt{\left (5-1 \right )^(2)+\left (2-(-1) \right )^(2)}= √(4^2+3^2) = 5](https://img.qammunity.org/2021/formulas/mathematics/high-school/o6794x1oe26wagw4bjqdx4o5oibmpq4mca.png)