239,844 views
44 votes
44 votes
NO LINKS!! PART 2: Find the EXACT area and Circumference of each circle​

NO LINKS!! PART 2: Find the EXACT area and Circumference of each circle​-example-1
User Chelsie
by
3.3k points

2 Answers

18 votes
18 votes

#2

  • (x-2)²+(y-5)²=9
  • (x-2)²+(y-5)²=3²

Radius=3

Circumference

  • 2π(3)
  • 6π units

Area

  • πr²
  • 3²π
  • 9π units²

#4

  • x²+y²=64
  • x²+y²=8²

Radius=8

Circumference

  • 2π(8)
  • 16π units

Area

  • πr²
  • π(8)²
  • 64π units ²
User Rrcal
by
2.7k points
19 votes
19 votes

Answer:

2. center: (2, 5); radius: 3; Area: 9π; Circumference: 6π

4. center: (0, 0); radius: 8; Area: 64π; Circumference: 16π

Explanation:

The standard form equation for a circle is ...

(x -h)² +(y -k)² = r² . . . . . . center (h, k), radius r

The value of r is used in the formulas for area (A) and circumference (C):

A = πr²

C = 2πr

__

2.

Comparing the given equation to the standard form, we see ...

(x -h)² +(y -k)² =

(x -2)² +(y -5)² = 9

(h, k) = (2, 5) . . . . center

r² = 9

This tells us ...

r = √9 = 3 . . . . radius

The Area formula uses r² directly:

Area = πr² = π(9)

Area = 9π

The Circumference formula uses r:

Circumference = 2π(3)

Circumference = 6π

__

4.

Comparing the given equation to the standard form, we find ...

(h, k) = (0, 0) . . . . center

r² = 64 ⇒ r = √64 = 8 . . . . radius

Area = 64π

Circumference = 2π(8) = 16π

User Rckrd
by
2.6k points