Answer: see proof below
Explanation:
Use the following Product to Sum Identities:
2 sin A · cos B = sin (A + B) + sin (A - B)
2 cos A · cos B = sin (A + B) + sin (A - B)
Given: cos A + cos B = 1/2 and sin A + sin B = 1/4
Proof LHS → RHS
![\text{LHS:}\qquad \qquad \qquad \tan(A+B)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/7g4corxu27gwukf7xa6gzwfjz8hl9lhfda.png)
![\text{Expand:}\qquad \qquad (\sin((A+B))/(2))/(\cos((A+B))/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/o9u5gftx5dbt088o3s5tdcofithkglspu5.png)
![\text{Multiplication:}\qquad \quad (\sin((A+B))/(2))/(\cos((A+B))/(2))\bigg((2\cos(A-B)/(2))/(2\cos (A-B)/(2))\bigg)](https://img.qammunity.org/2021/formulas/mathematics/high-school/nubx8z4qdf7mp59ws5do8o37jo32kn5h9z.png)
![\text{Simplify:}\qquad \qquad \quad (2\sin (A+B)/(2)\cdot \cos (A-B)/(2))/(2\cos (A+B)/(2)\cdot \cos (A-B)/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/qx0qc09uicncdrnl4khzy8xxuqm7w9chga.png)
![\text{Product to Sum:}\qquad (\sin A+\sin B)/(\cos A+\cos B)](https://img.qammunity.org/2021/formulas/mathematics/high-school/90297ziz8axuyvqasx8h7k0gsk6x98m9w9.png)
![\text{Given:}\qquad \qquad \qquad \quad ((1)/(4))/((1)/(2))](https://img.qammunity.org/2021/formulas/mathematics/high-school/lzl4ey0zz7jjycnt4j2csqm6misxt662ks.png)
![\text{Simplify:}\qquad \qquad \qquad (1)/(2)](https://img.qammunity.org/2021/formulas/mathematics/high-school/xuafmnd8uzsk2j1y7csxkgqjg05qdmrzr0.png)
LHS = RHS: 1/2 = 1/2
![\checkmark](https://img.qammunity.org/2021/formulas/mathematics/middle-school/2v4z11vsn0bdvhj920fbk7f97ux40axw6u.png)