88.6k views
4 votes
Tentukan nilai x yang memenuhi ketidaksamaan. |3x + 12| < 2 |x - 6|

1 Answer

6 votes

Answer:

x∈(-24, 0) -24 < x < 0

Explanation:

|3x + 12| < 2 |x - 6|

|3(x + 4)| < 2 |x - 6| ⇒ -4 and 6 are "zeros"

1°. x∈(-∞, -4> ⇒ |3x + 12| = - (3x + 12) and 2|x - 6| = -2(x-6)

-(3x + 12) < -2(x - 6)

-3x - 12 < -2x + 12

-x < 24

x > -24 ∧ x∈(-∞-4> ⇒ x∈(-18, -4>

2°. x∈(-4, 6) ⇒ |3x + 12| = 3x+12 and 2|x - 6| = -2(x-6)

3x + 12 < -2(x - 6)

3x + 12 < -2x + 12

5x < 0

x < 0 ∧ x∈(-4, 6) ⇒ x∈(-4, 0)

3°. x∈(6, ∞) ⇒ |3x + 12| = 3x+12 and 2|x - 6| = 2(x-6)

3x + 12 < 2(x - 6)

3x + 12 < 2x - 12

x < -24

x < -24 ∧ x∈(6, ∞) ⇒ x∈∅

x∈1°∪2°∪3°

x∈(-24, -4>∪(-4, 0)∪∅

x∈(-24, 0) -24 < x < 0

User Sergey Shambir
by
3.9k points