123k views
2 votes
Solve the system of linear equations for x and y.(cos θ)x + (sin θ)y=1(−sin θ)x + (cos θ)y = 0x=y=

User Ompel
by
3.1k points

1 Answer

4 votes

Answer:


\bold{x =cos\theta}\\\bold{y=sin\theta}

Explanation:

The given system of linear equations is:


(cos\theta)x+(sin\theta)y=1\\(-sin\theta)x+(cos\theta)y=0

We have to solve the equations for the values of
x, y.

Let us use elimination method in which we eliminate one of the variables from the two variables.

For this, let us multiply the first equation by
sin\theta and second equation by
cos\theta

Now, the equations become:


(cos\theta.sin\theta)x+(sin\theta.sin\theta)y=sin\theta\\\Rightarrow (cos\theta.sin\theta)x+(sin^2\theta)y=sin\theta ....... (1)\\\\(-sin\theta.cos\theta)x+(cos\theta.cos\theta)y=0\\\Rightarrow (-sin\theta.cos\theta)x+(cos^2\theta)y=0 ..... (2)

Now, let us add (1) and (2):


(sin^2\theta)y+(cos^2\theta)y=sin\theta\\\Rightarrow (sin^2\theta+cos^2\theta)y=sin\theta\\\Rightarrow (1)y=sin\theta\\\Rightarrow y = sin\theta

Using the equation:


(-sin\theta)x+(cos\theta)y=0

Putting value of
y:


\Rightarrow (-sin\theta)x+(cos\theta)sin\theta=0\\\Rightarrow (sin\theta)x=(cos\theta)sin\theta\\\Rightarrow x = cos\theta

So, the answer to the system of linear equations is:


\bold{x =cos\theta}\\\bold{y=sin\theta}