Answer:
Answer: approximately -1.63 and -7.37
Explanation:
First of all, let's expand the parenthesis by multiplying x into both of its terms.
![x(x+9)+12 = 0\\x^2+9x+12=0](https://img.qammunity.org/2021/formulas/mathematics/college/50z0to5t3ym1p961njzudvz2h4zz1imnig.png)
We get the equation:
![x^2+9x+12=0](https://img.qammunity.org/2021/formulas/mathematics/college/gl0gh9zlro0y689sci5a0h7b7imkr2xpt4.png)
The quadratic formula looks like this
![$x=(-b\pm√(b^2-4ac))/(2a)$](https://img.qammunity.org/2021/formulas/mathematics/middle-school/ye6x873fqejcv8fzlwz5fdgglwrn4ny1ec.png)
where the equation is of the form
![ax^(2)+bx+c=0](https://img.qammunity.org/2021/formulas/mathematics/middle-school/m86258anl0mttc3bpgocxuo0ooxp0ii7vd.png)
Comparing this to our equation above,
![x^2+9x+12=0](https://img.qammunity.org/2021/formulas/mathematics/college/gl0gh9zlro0y689sci5a0h7b7imkr2xpt4.png)
we can see that
![a = 1\\b= 9\\c= 12](https://img.qammunity.org/2021/formulas/mathematics/college/ydr6tg1znr0ydneh34m2pfchwxh12qqqe6.png)
Let's put these values into the quadratic formula.
![x=(-b\pm√(b^2-4ac))/(2a)\\x=(-9\pm√(9^2-4*1*12))/(2*1)\\x=(-9\pm√(9^2-48))/(2)\\x=(-9\pm√(81-48))/(2)\\x=(-9\pm√(33))/(2)\\x=(-9\pm\ 5.744...)/(2)\\x=(-9\pm\ 5.744...)/(2)\\x_(1)=(-9+5.744...)/(2)=(-3.255...)/(2)=-1.62771867\\x_(2)=(-9-5.744...)/(2)=(-14.744...)/(2)=-7.3722813\\](https://img.qammunity.org/2021/formulas/mathematics/college/v35mpjdv5e378qoci400y3o6tpq8meg0v0.png)
Answer: approximately -1.63 and -7.37
You can also choose not to approximate the square root of 33, and you'd receive the answers:
![x_(1)=(-9+√(33))/(2)\\x_(2)=(-9-√(33))/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/qxa7s8f1voeq6dhhxbst9atdz695hxstua.png)