Answer:
![\mathbf{R(\tau) = (A^2)/(2) cos (\omega \tau)}](https://img.qammunity.org/2021/formulas/mathematics/college/9xbmxd6gmstb8gqndscqs9ndl46qwxh4po.png)
Explanation:
To find Autocorrelation function of the following periodic function
Given that:
X(t) = A sin(wt +θ)
with the period T=2π/w , A, θ, and w are constants.
The autocorrelation function of periodic function with period and phase θ can be expressed as:
![R(\tau) = (1)/(T) \int \limits ^(T/2)_(-T/2) x(t) *x(t - \tau) \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/gtey9etpv8bzusqkgguqyps7wmj64ci045.png)
![R(\tau) = (A^2)/(T) \int \limits ^(T/2)_(-T/2) \ A sin ( \omega t + \theta)*A sin [ \omega (t- \tau ) + \theta] \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/xf5v5szye53gucsoei4fvlgttnyggzeu3y.png)
where;
![sinAsin B = (1)/(2)[cos (A-B) -cos (A+B)]](https://img.qammunity.org/2021/formulas/mathematics/college/s4i9ruvgzq82qk30kfaxb728y3avei3bs6.png)
Then;
![R(\tau) = (A^2)/(2T) \int \limits ^(T/2)_(-T/2) \ cos ( \omega t- \omega \tau + \theta - \omega t - \theta) - cos (\omega t - \omega \tau + \theta + \omega t + \theta) \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/de3ueh77bcefaahjywb0pnz4opxpwq82kz.png)
![R(\tau) = (A^2)/(2T) \int \limits ^(T/2)_(-T/2) \ cos ( - \omega \tau ) - cos (2 \omega t - \omega \tau + 2 \theta) \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/7jrtfnjnvo4big7lm7hs2w03o70yrmexp7.png)
![R(\tau) = (A^2)/(2T) \int \limits ^(T/2)_(-T/2) \ cos ( - \omega \tau ) \ dt - (1)/(2T) \int \limits ^(T/2)_(-T/2) cos (2 \omega t - \omega \tau + 2 \theta) \ dt](https://img.qammunity.org/2021/formulas/mathematics/college/31gha7ywamuqqdprag78m06vjbrrnfhmjn.png)
The term 2 is the cosine wave of frequency and the phase =
![- w \tau + 2 \theta](https://img.qammunity.org/2021/formulas/mathematics/college/5duubub1dvvrdg7jk7beostk22jyrdlegc.png)
if we integrate that, the second term in the expansion for R(t) = zero
As such,
![R(\tau) = (A^2)/(2T) \int \limits^(T/2)_(-T/2) \ cos ( - \omega \tau ) dt](https://img.qammunity.org/2021/formulas/mathematics/college/gfgbfrf9bmtchvfcubf5v322p05lxtdxed.png)
where ;
is constant
Then :
![R(\tau) = (A^2)/(2T) cos (-\omega \tau) [t]^(T/2)_(-T/2)](https://img.qammunity.org/2021/formulas/mathematics/college/z7ph4l49ivx06sdjyhuyyeubyekov91xe2.png)
![R(\tau) = (A^2)/(2T) cos (-\omega \tau) * [(T)/(2)+ (T)/(2)]](https://img.qammunity.org/2021/formulas/mathematics/college/kk4qvlvdezov2n4nefl3zazw9rmxt5lme9.png)
![R(\tau) = (A^2)/(2T) cos (-\omega \tau) * [(2T)/(2)]](https://img.qammunity.org/2021/formulas/mathematics/college/oe9xus2xjutb8g8rs4osxqe84lbabvfaut.png)
![R(\tau) = (A^2)/(2T) cos (-\omega \tau) * T](https://img.qammunity.org/2021/formulas/mathematics/college/ygs3hi1d3fkrl1fj66eogf0m16z5kgzf86.png)
![R(\tau) = (A^2)/(2) cos (-\omega \tau)](https://img.qammunity.org/2021/formulas/mathematics/college/66fmaxw28zg2xrwcbfwa515job8byxcks1.png)
since
![cos (-\omega \tau) = cos (\omega \tau)](https://img.qammunity.org/2021/formulas/mathematics/college/mjlp00t2am5cs3pqayjotg8wed4b7xhpzv.png)
![\mathbf{R(\tau) = (A^2)/(2) cos (\omega \tau)}](https://img.qammunity.org/2021/formulas/mathematics/college/9xbmxd6gmstb8gqndscqs9ndl46qwxh4po.png)