Answer:

Explanation:
Given data :
89 , 74 , 100 , 86 , 74 , 67 , 86 , 72 , 60 , 93 , 83 , 86
Arranging the data in ascending order, we have,
60 , 67 , 72 , 74 , 74 ,83 , 86 , 86 , 86 , 89 , 93 , 100
Here, n ( total no.of observation ) = 12
Now, finding the position of media :

⇒

⇒

⇒

6.5 th item is the average of 6 th and 7 th items.
Again,

⇒

⇒

⇒

Hope I helped!
Best regards!!