186k views
1 vote
The radius of a sphere is 7 meters what is the circle's area

User PalashV
by
6.9k points

1 Answer

5 votes

Given :


\begin{lgathered}\bullet\:\:\textsf{Radius of circle = \textbf{7 meter}}\end{lgathered}


\rule{130}1

Digram :


\setlength{\unitlength}{1mm}\begin{picture}(50,55)\thicklines\qbezier(25.000,10.000)(33.284,10.000)(39.142,15.858)\qbezier(39.142,15.858)(45.000,21.716)(45.000,30.000)\qbezier(45.000,30.000)(45.000,38.284)(39.142,44.142)\qbezier(39.142,44.142)(33.284,50.000)(25.000,50.000)\qbezier(25.000,50.000)(16.716,50.000)(10.858,44.142)\qbezier(10.858,44.142)( 5.000,38.284)( 5.000,30.000)\qbezier( 5.000,30.000)( 5.000,21.716)(10.858,15.858)\qbezier(10.858,15.858)(16.716,10.000)(25.000,10.000)\put(25,30){\line(5,0){20}}\put(25,30){\circle*{1}}\put(29,26){\sf\large{7 m}}\end{picture}


\rule{130}1

Solution :


\underline{\boldsymbol{According\: to \:the\: Question\:now :}}


:\implies\sf Area\:of\:circle = \pi r^2 \\\\\\:\implies\sf Area\:of\:circle = \frac{22}{\cancel{7}} * \cancel{7} * 7\\\\\\:\implies\sf Area\:of\:circle = 22 * 7\\\\\\:\implies\sf Area\:of\:circle = 154 m^(2)


\therefore\:\underline{\textsf{Area of circle is \textbf{154}} \:\sf{m^2}}.


\rule{170}{2}

User Erick T
by
5.9k points