Answer:
The 90% confidence interval is (-1.987, -1.320).
Explanation:
The data provided is:
Sleep without Sleep using
the drug the drug d=without-with
2.5 4.3 -1.8
2.7 4.2 -1.5
3.8 5.0 -1.2
3.8 6.2 -2.4
1.8 2.5 -0.7
4.7 7.1 -2.4
4.8 7.1 -2.3
2.7 3.3 -0.6
1.8 3.5 -1.7
2.2 4.3 -2.1
3.6 4.3 -0.7
5.3 7.0 -1.7
5.2 7.6 -2.4
Compute the sample mean and sample standard deviation:
![\bar d=(1)/(n)\sum d=(1)/(13)* [(-1.8)+(-1.5)+(-1.2)+...+(-2.4)]=-1.654\\\\S_(d)=\sqrt{(1)/(n-1)\sum [d-\bar d]^(2)}=0.6753](https://img.qammunity.org/2021/formulas/mathematics/high-school/176i17phofpm19uosty7zvake1rwrvhy4d.png)
The degrees of freedom of the test is:
df = n - 1 = 13 - 1 = 12
Compute the critical value of t for 90% confidence level and 12 degrees of freedom as follows:

Compute the 90% confidence interval as follows:

![-1.645-[1.782\cdot(0.6753)/(√(13))]<\mu_(d)<-1.645+[1.782\cdot(0.6753)/(√(13))]\\\\-1.645-0.334<\mu_(d)<-1.654+0.334\\\\-1.988<\mu_(d)<-1.320](https://img.qammunity.org/2021/formulas/mathematics/high-school/rxun6zdvv8l0a439czm1tqwf7qj38x00fo.png)
Thus, the 90% confidence interval is (-1.987, -1.320).