Answer:
E
Explanation:
So we already know that:
![\lim_(x \to 5) f(x)=2 \text{ and } \lim_(x \to 5) g(x)=-6](https://img.qammunity.org/2021/formulas/mathematics/college/7390qikobq4jb8orb0xdtw1874cc3jfl90.png)
So, go through each of the choices and see which ones are correct.
I)
We have:
![\lim_(x \to 5) (f(x)+g(x))](https://img.qammunity.org/2021/formulas/mathematics/college/2gm2nlersrs8sqkw2nxioydwhg394l87d1.png)
This is the same as saying:
![\lim_(x \to 5) f(x)+ \lim_(x \to 5) g(x)](https://img.qammunity.org/2021/formulas/mathematics/college/xfp0l7kd94snxrmf77xlc6fsb3d77eslzl.png)
And since we already know the values:
![=(2)+(-6)\\=-4](https://img.qammunity.org/2021/formulas/mathematics/college/atdkxbjpsemafvdkrnhzjm2bjazmrdndek.png)
So, the limit does indeed exist.
II)
We have:
![\lim_(x \to 5) (f(x))/(g(x)+6)](https://img.qammunity.org/2021/formulas/mathematics/college/f3lmnaulnyxq17nuf5e8hnvpcn05egh9wh.png)
This is the same as:
![( \lim_(x \to 5) f(x))/( \lim_(x \to 5) g(x)+ \lim_(x \to 5) 6 )](https://img.qammunity.org/2021/formulas/mathematics/college/hcngxnweb82ek88ysvy7mzsi510ggo80si.png)
The bottom right one is just 6. Simplify:
![( \lim_(x \to 5) f(x))/( \lim_(x \to 5) g(x)+6)](https://img.qammunity.org/2021/formulas/mathematics/college/m82p2gg14lu34iqvxbzdnbtvwvn42it8tz.png)
Substitute the values we know:
![=((2))/((-6)+6) \\=2/0](https://img.qammunity.org/2021/formulas/mathematics/college/3qk3wgavcxtfdkuy3x5aiwi4xxiz4iikwd.png)
This is a value over zero. Unlike the indeterminate form 0/0, this limit does not exist.
III)
We have:
![\lim_(x \to 5) (f(x)-2)/(g(x))](https://img.qammunity.org/2021/formulas/mathematics/college/ubxbdecnb250abzj7u3wueiu11di36b42e.png)
Again, this is the same as:
![( (\lim_(x \to 5) f(x))-2)/( \lim_(x \to 5) g(x))](https://img.qammunity.org/2021/formulas/mathematics/college/ktp3law0ldx2qqok47az6uammcwb466ohu.png)
Substitute in the values we know:
![=((2)-2)/((-6))\\ =0/-6=0](https://img.qammunity.org/2021/formulas/mathematics/college/5tb90qj9i6dw04viru17chy4k1zi1o2n7c.png)
The limit does exist and it is 0.
So, the limits of only I and III exist.
The correct answer is E.