Answer:
m<VRU = 80°
m<URW = 15°
Explanation:
<SRW and <VRT are vertical opposite angles. Vertical opposite angles are equal. Therefore:
![2x + 15 = 85](https://img.qammunity.org/2021/formulas/mathematics/college/oqz1vy2txhhaa3y4h4vf2000r3ig2qv4mw.png)
Use this expression to solve for the value of x
![2x + 15 - 15 = 85 - 15](https://img.qammunity.org/2021/formulas/mathematics/college/2bwwpu1g2hqh0libndrl85i927r2m7eord.png)
![2x = 70](https://img.qammunity.org/2021/formulas/mathematics/college/dkcphago56n6mk8n0ibrujqukix4oj9isn.png)
![(2x)/(2) = (70)/(2)](https://img.qammunity.org/2021/formulas/mathematics/college/ge0zhswqgag96ndhz6gke81aj4h71orxod.png)
![x = 35](https://img.qammunity.org/2021/formulas/mathematics/middle-school/y67d26p2q319mahp1quxbqgd7xu8un54ww.png)
Find m<VRU by plugging in the value of x in the expression for its angle given.
m<VRU = [tex] 2x + 10 [tex]
[tex] 2(35) + 10 = 70 + 10 = 80 [tex]
m<VRU = 80°
FIND m<URW.
m<URW = 180° - (m<VRU + m<SRW) (angles on a straight line is 180°)
m<URW = 180 - (80 + 85)
= 180 - 165
m<URW = 15°