130k views
1 vote
Let (-3, 7) be a point on the terminal side of 0.

Find the exact values of sin 0, sec 0, and tan 0.

1 Answer

3 votes

Answer:


\sin O \approx 0.919,
\sec O \approx -2.539 and
\tan O = -(7)/(3).

Explanation:

Given a point (x, y) with respect to origin and in rectangular coordinates, the exact value of sine, secant and tangent functions are, respectively:


\sin O = \frac{y}{\sqrt{x^(2)+y^(2)}}


\sec O = (1)/(\cos O) = \frac{\sqrt{x^(2)+y^(2)}}{x}


\tan O = (\sin O)/(\cos O) = (y)/(x)

Given that
x = -3 and
y = 7, the exact values of sine, secant and tangent are:


\sin O = \frac{7}{\sqrt{(-3)^(2)+7^(2)}}


\sin O \approx 0.919


\sec O = \frac{\sqrt{(-3)^(2)+7^(2)}}{-3}


\sec O \approx -2.539


\tan O = (7)/(-3)


\tan O = -(7)/(3)

User Import Random
by
4.3k points