Answer:
![x(t)=-1](https://img.qammunity.org/2021/formulas/mathematics/college/n9d4suogaxo8c9qtk66fc82i69o9snilmf.png)
![y(t)=-4+4(t)](https://img.qammunity.org/2021/formulas/mathematics/college/e1kxt5m8hx64agshpezhuz3c5hbdy5s3zu.png)
![z(t)=2-5(t)](https://img.qammunity.org/2021/formulas/mathematics/college/uhui1gfzn2csqdhqrxdcguy4ik2re7jf2f.png)
Explanation:
To find: The vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3).
Let A (−1,−4,2) and B(−1,0,−3)
First we find direction vectors :
![\overrightarrow{AB}=<-1-(-1),0-(-4),-3-2>](https://img.qammunity.org/2021/formulas/mathematics/college/u6bnuurne8q7ny40f0xty520ktazenyotc.png)
![<0,4,-5>](https://img.qammunity.org/2021/formulas/mathematics/college/fhlmc19gpgdtp2h702i9e3pwzu3ht3b9ic.png)
Now, the parametric equations of the line:
![x(t)=-1+0(t)](https://img.qammunity.org/2021/formulas/mathematics/college/yz5nuj8zu2pwtff1il2ywznewy6ftttdx7.png)
![y(t)=-4+4(t)](https://img.qammunity.org/2021/formulas/mathematics/college/e1kxt5m8hx64agshpezhuz3c5hbdy5s3zu.png)
![z(t)=2-5(t)](https://img.qammunity.org/2021/formulas/mathematics/college/uhui1gfzn2csqdhqrxdcguy4ik2re7jf2f.png)
Hence, the vector parametric equations for the line through the points (−1,−4,2) and (−1,0,−3):
![x(t)=-1](https://img.qammunity.org/2021/formulas/mathematics/college/n9d4suogaxo8c9qtk66fc82i69o9snilmf.png)
![y(t)=-4+4(t)](https://img.qammunity.org/2021/formulas/mathematics/college/e1kxt5m8hx64agshpezhuz3c5hbdy5s3zu.png)
![z(t)=2-5(t)](https://img.qammunity.org/2021/formulas/mathematics/college/uhui1gfzn2csqdhqrxdcguy4ik2re7jf2f.png)