156k views
5 votes

f(x) = {x}^(2) + 4x - 5

when
x > - 2
find
\frac{d {f}^( - 1) }{dx} at \: x = 16


User Daenyth
by
4.1k points

1 Answer

3 votes

Answer:


(df^(1)(16))/(dx) = \pm (1)/(10)

Explanation:


f(x) = x^2 + 4x - 5

First we find the inverse function.


y = x^2 + 4x - 5


x = y^2 + 4y - 5


y^2 + 4y - 5 = x


y^2 + 4y = x + 5


y^2 + 4y + 4 = x + 5 + 4


(y + 2)^2 = x + 9


y + 2 = \pm√(x + 9)


y = -2 \pm√(x + 9)


f^(-1)(x) = -2 \pm√(x + 9)


f^(-1)(x) = -2 \pm (x + 9)^{(1)/(2)}

Now we find the derivative of the inverse function.


(df^(-1)(x))/(dx) = \pm (1)/(2)(x + 9)^{-(1)/(2)}


(df^(-1)(x))/(dx) = \pm (1)/(2√(x + 9))

Now we evaluate the derivative of the inverse function at x = 16.


(df^(-1)(16))/(dx) = \pm (1)/(2√(16 + 9))


(df^(-1)(16))/(dx) = \pm (1)/(2√(25))


(df^(-1)(16))/(dx) = \pm (1)/(2 * 5 )


(df^(-1)(16))/(dx) = \pm (1)/(10)

User Andrei Chis
by
4.5k points