Answer:
They have different wavelengths.
They have different frequencies.
They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.
Step-by-step explanation:
The complete question is
Consider the following:
a) radio waves emitted by a weather radar system to detect raindrops and ice crystals in the atmosphere to study weather patterns;
b) microwaves used in communication satellite transmissions;
c) infrared waves that are perceived as heat when you turn on a burner on an electric stove;
d) the multicolor light in a rainbow;
e) the ultraviolet solar radiation that reaches the surface of the earth and causes unprotected skin to burn; and
f) X rays used in medicine for diagnostic imaging.
Which of the following statements correctly describe the various forms of EM radiation listed above?
check all that apply to the above
They have different wavelengths.
They have different frequencies.
They propagate at different speeds through a vacuum depending on their frequency.
They propagate at different speeds through non-vacuum media depending on both their frequency and the material in which they travel.
They require different media to propagate.
All the above phenomena are due the electromagnetic wave spectrum. Electromagnetic waves travel at a constant speed of 3 x 10^8 m/s in a vacuum. Within the spectrum, the different types of electromagnetic waves exists in different band range of frequencies and wavelengths unique to each of the waves, and the energy they carry. When these waves enter a non-vacuum medium, their speed change, depending on the nature of the material of the medium, and the frequency or the wavelength of the incoming wave.