204k views
4 votes
Find each measurement. (The figure is not drawn to scale.)

Find each measurement. (The figure is not drawn to scale.)-example-1
User Nachum
by
4.1k points

1 Answer

0 votes

Answer:

a. m∠Z = 62

b.
m\widehat{WZ} = 118

c. m∠W = 62

d.
m\widehat{WX} = 122°

Explanation:

a. The given parameters are;

m∠X = 118


\overline {WZ} \cong \overline {YZ}

m∠Y = 120

m∠X + m∠Z = 180 Angles in opposite segment are supplementary

m∠Z = 180 - m∠X = 180 - 118 = 62

m∠Z = 62

b. Given
\overline {WZ} \cong \overline {YZ} line drawn from W to Y forms isosceles triangles WZY, with base angles ∠WYZ and ∠YWZ equal (Base angles of an isosceles triangle)

Therefore

∠WYZ + ∠YWZ + m∠Z = 180 (Angle sum theorem)

∠WYZ = ∠YWZ (Substitution property of equality)

∠WYZ + ∠YWZ + m∠Z = ∠WYZ + ∠WYZ + m∠Z =180

2×∠WYZ + 62 =180

2×∠WYZ = 180 -62 = 118°

∠WYZ = 118°/2 =59

∠WYZ = ∠YWZ = 59


m\widehat{WZ} subtends chord WZ at the center = ∠WYZ subtends chord WZ at the circumference

∴ 2×∠WYZ =
m\widehat{WZ}


m\widehat{WZ} = 2×59 = 118


m\widehat{WZ} = 118

c. m∠X + m∠Y + m∠Z + m∠W = 360 (Sum of angles in a quadrilateral)

m∠W = 360 - (m∠X + m∠Y + m∠Z) = 360 - (118 + 120 + 60) = 62

m∠W = 62

d.
m\widehat{WZ} +
m\widehat{WX} =
m\widehat{XWZ} (Angle addition postulate)


m\widehat{XWZ} = 2 × ∠Y (Angle subtended at the center = 2 × Angle subtended at the circumference


m\widehat{XWZ} = 2 × 120 = 240


m\widehat{WX} =
m\widehat{XWZ} -
m\widehat{WZ}


m\widehat{WX} = 240 - 118 = 122°


m\widehat{WX} = 122°.

User JayVDiyk
by
4.5k points