Answer:
a. m∠Z = 62
b.
= 118
c. m∠W = 62
d.
= 122°
Explanation:
a. The given parameters are;
m∠X = 118
m∠Y = 120
m∠X + m∠Z = 180 Angles in opposite segment are supplementary
m∠Z = 180 - m∠X = 180 - 118 = 62
m∠Z = 62
b. Given
line drawn from W to Y forms isosceles triangles WZY, with base angles ∠WYZ and ∠YWZ equal (Base angles of an isosceles triangle)
Therefore
∠WYZ + ∠YWZ + m∠Z = 180 (Angle sum theorem)
∠WYZ = ∠YWZ (Substitution property of equality)
∠WYZ + ∠YWZ + m∠Z = ∠WYZ + ∠WYZ + m∠Z =180
2×∠WYZ + 62 =180
2×∠WYZ = 180 -62 = 118°
∠WYZ = 118°/2 =59
∠WYZ = ∠YWZ = 59
subtends chord WZ at the center = ∠WYZ subtends chord WZ at the circumference
∴ 2×∠WYZ =
= 2×59 = 118
= 118
c. m∠X + m∠Y + m∠Z + m∠W = 360 (Sum of angles in a quadrilateral)
m∠W = 360 - (m∠X + m∠Y + m∠Z) = 360 - (118 + 120 + 60) = 62
m∠W = 62
d.
+
=
(Angle addition postulate)
= 2 × ∠Y (Angle subtended at the center = 2 × Angle subtended at the circumference
∴
= 2 × 120 = 240
=
-
= 240 - 118 = 122°
= 122°.