32.7k views
0 votes
12. Prove that v' = u? + 2as.​

User Blankart
by
4.5k points

2 Answers

3 votes

Correction:-

Prove that v² = u² + 2as .

Solution:-

From first equation of motion,

v = u + at

=> at = v - u

=> t = v - u / a

From the second equation of motion, we have

s = ut + 1/2at²

Putting the value of t in above equation , we get:

s = u ( v - u /a ) + 1/2 a ( v - u/a )²

s = uv - u² / a + a( v² + u² - 2uv / 2a²)

s = uv - u² / a + v² + u² - 2uv / 2a

s = 2uv - 2u² + v² + u² - 2uv / 2a

2as = v² - u²

User Neto Braghetto
by
4.0k points
3 votes

Answer:


\boxed{ \boxed{ \orange{ \sf{see \: below}}}}

Step-by-step explanation:


{ \underline{ \underline \bold{ \sf{ \blue{ {question \: }}}}}}


\sf{ \bold{ \underline{ \: prove \: that \: {v}^(2) = {u}^(2) + 2as}}}


\underline{ \underline{ { \bold{ \sf{ \purple{solution} }}}}}

Let us assume a body moving with an initial velocity ' u '. Let it's final velocity be 'v' after a time 't' and the distance travelled by the body be 's'. We already have ,


\sf{v = u + at} ⇒first equation of motion ( i )


\sf{s = (u + v)/(2) * t} ⇒second equation of motion ( ii )

Putting the value of t from ( i ) in the equation ( ii )

{ v = u + at

or , at = v - u

or, t = v-u / a }


\sf{s = (u + v)/(2) * (v - u)/(a) }


\sf{or \: s = \frac{ {v}^(2) - {u}^(2) }{2a} }


\sf{or \: 2as = {v}^(2) - {u}^(2) }


\sf{ \boxed{ \bold{ \:  ∴ \: \: \: {v}^(2) = {u}^(2) + 2as}}} ⇒ forth equation of motion

Hope I helped!

Best regards!!

User Qian Wang
by
4.4k points