Correction:-
Prove that v² = u² + 2as .
Solution:-
From first equation of motion,
v = u + at
=> at = v - u
=> t = v - u / a
From the second equation of motion, we have
s = ut + 1/2at²
Putting the value of t in above equation , we get:
s = u ( v - u /a ) + 1/2 a ( v - u/a )²
s = uv - u² / a + a( v² + u² - 2uv / 2a²)
s = uv - u² / a + v² + u² - 2uv / 2a
s = 2uv - 2u² + v² + u² - 2uv / 2a
2as = v² - u²