436,412 views
36 votes
36 votes

({4e }^(2) + 16e - 9) / (2ef + 12e - f - 6)
please help me solve this problem​

User Michael Mulqueen
by
2.6k points

1 Answer

15 votes
15 votes

Step-by-step explanation


(4e^2+16e-9)/(2ef+12e-f-6)

⇒ First, factor the numerator by grouping:


=(4e^2-2e+18e-9)/(2ef+12e-f-6)\\\\\\=(2e(2e-1)+9(2e-1))/(2ef+12e-f-6)\\\\\\=((2e+9)(2e-1))/(2ef+12e-f-6)

⇒ Now, factor the denominator by grouping:


=((2e+9)(2e-1))/(2e(f+6)-(f+6))\\\\\\=((2e+9)(2e-1))/((2e-1)(f+6))

We must determine which values of e and f are unacceptable, meaning, will make this expression undefined. These will be the values of e and f that make the denominator equal to 0.

  • ⇒ To find these values, let's set each term in the denominator equal to 0, and solve for e and f.

  • 2e-1=0
    2e=1
    e=(1)/(2)

  • f+6=0
    f=-6
  • ⇒ The restrictions for e and f include
    e=(1)/(2) and
    f=-6.


=((2e+9)(2e-1))/((2e-1)(f+6))

⇒ Reduce values in the numerator and denominator:


=((2e+9))/((f+6))\\\\\\=(2e+9)/(f+6)

Answer


=(2e+9)/(f+6)

User Maecy M
by
2.8k points