231k views
0 votes
(2x2 + 2x + 3) - (x2 + 2x + 1) =

O A. x2 + 4
O B. x2 + 4x + 2
O C. x2 + 4x + 4
O D. x2 + 2

User Olivie
by
8.1k points

1 Answer

1 vote

Answer:


\boxed{\sf D. \ x^2 + 2}

Explanation:


\sf Simplify \ the \ following:


\sf \implies (2 {x}^(2) + 2x + 3) - ( {x}^(2) + 2x + 1)


\sf - ( {x}^(2) + 2x + 1) = - {x}^(2) - 2x - 1 :


\sf \implies (2 {x}^(2) + 2x + 3) - {x}^(2) - 2x - 1


\sf Grouping \ like \ terms:


\sf \implies (2 {x}^(2) - {x}^(2)) + (2x - 2x)+ (3 - 1)


\sf 2 {x}^(2) - {x}^(2) = {x}^(2) :


\sf \implies {x}^(2) + (2x - 2x)+ (3 - 1)


\sf 2x - 2x = 0 :


\sf \implies {x}^(2) + 0+ (3 - 1)


\sf 3 - 1 = 2 :


\sf \implies {x}^(2) +2

User Ramen
by
7.8k points